BackgroundBrazilian spotted fever (BSF), caused by the bacterium Rickettsia rickettsii, has been associated with the transmission by the tick Amblyomma sculptum, and one of its main hosts, the capybara (Hydrochoerus hydrochaeris).MethodsDuring 2015–2019, we captured capybaras and ticks in seven highly anthropic areas of São Paulo state (three endemic and four nonendemic for BSF) and in two natural areas of the Pantanal biome, all with established populations of capybaras.ResultsThe BSF-endemic areas were characterized by much higher tick burdens on both capybaras and in the environment, when compared to the BSF-nonendemic areas. Only two tick species (A. sculptum and Amblyomma dubitatum) were found in the anthropic areas; however, with a great predominance of A. sculptum (≈90% of all ticks) in the endemic areas, in contrast to a slight predominance of A. dubitatum (≈60%) in the nonendemic areas. Tick species richness was higher in the natural areas, where six species were found, albeit with a predominance of A. sculptum (≈95% of all ticks) and environmental tick burdens much lower than in the anthropic areas. The BSF-endemic areas were characterized by overgrowth populations of A. sculptum that were sustained chiefly by capybaras, and decreased populations of A. dubitatum. In contrast, the BSF-nonendemic areas with landscape similar to the endemic areas differed by having lower tick burdens and a slight predominance of A. dubitatum over A.sculptum, both sustained chiefly by capybaras. While multiple medium- to large-sized mammals have been incriminated as important hosts for A. sculptum in the natural areas, the capybara was the only important host for this tick in the anthropic areas.ConclusionsThe uneven distribution of R. rickettsii infection among A. sculptum populations in highly anthropic areas of São Paulo state could be related to the tick population size and its proportion to sympatric A. dubitatum populations.
Human activities are changing landscape structure and function globally, affecting wildlife space use, and ultimately increasing human-wildlife conflicts and zoonotic disease spread. Capybaras (Hydrochoerus hydrochaeris) are linked to conflicts in human-modified landscapes (e.g. crop damage, vehicle collision), as well as the spread and amplification of Brazilian spotted fever (BSF), the most human-lethal tick-borne disease in the world. Even though it is essential to understand the link between capybaras, ticks and BSF, many knowledge gaps still exist regarding the effects of human disturbance in capybara space use. Here, we analyzed diurnal and nocturnal habitat selection strategies of capybaras across natural and human-modified landscapes using resource selection functions (RSF). Selection for forested habitats was higher across human-modified landscapes, mainly during dayperiods, when compared to natural landscapes. Across natural landscapes, capybaras avoided forests during both day-and night periods. Water was consistently selected across both landscapes, during day-and nighttime. Distance to water was also the most important
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.