This paper investigates the use of an aqueous dispersion of polyethylene copolymer with a relatively high content of acrylic acid as a compatibilizer and as an alternative medium to obtain polyethylene CNF nanocomposites. The CNF content was varied from 1 to 90wt% and the appearance, optical, thermal, mechanical and rheological properties, as well the morphology of the films were evaluated. The PE/CNF films are transparent up to 20wt% of NFC indicating a good dispersion of CNF, but a poor distribution, with PE-rich and CNF-rich regions observed by SEM. Improved mechanical properties were achieved, with a 100% and 15,900% increase in the Young's modulus with 1wt% and 90wt% NFC, respectively. The rheological behavior indicated good melt processability. According to these results, aqueous polyolefin dispersions seem to be a promising, easy and relatively fast route for obtaining cellulose/polyolefins nanocomposites with low to high contents of cellulose nanofibrils.
Polypropylene (PP) composites with cellulose nanofibril (CNF), lignocellulose nanofibril (LCNF) or bleached kraft wood pulp (BWKP) cellulose microfibril compatibilized by maleic anhydride grafted polypropylene were produced by different approaches. Samples containing 10-30 wt% filler were prepared by mixing cellulose aqueous suspensions and PP through solid-state shear pulverization. The flakes obtained were compounded by twin-screw melt extrusion (MSE) followed by injection molding (IM) into standard specimens. Reference samples with 30 wt% CNF or LCNF were prepared through a standard procedure, which involved freeze-drying of nanofibrils aqueous suspensions before MSE and IM, whereas a sample with 30 wt% BWKP was prepared directly by MSE and IM. Injection-molded specimens were characterized by scanning electron microscopy, differential scanning calorimetry, thermogravimetry, and tensile and notched impact tests. The thermal behavior of the PP matrix in the composites was not significantly affected by the filler type and content and processing route as well. CNF and LCNF reinforced PP composites showed inferior mechanical properties, due to the formation of nanofibrils agglomerates in the PP matrix, regardless of the processing route adopted. Highly filled (30 wt%) BWKP composites presented superior mechanical properties with significant increase in the modulus, tensile strength, and impact strength due to the formation of well-dispersed microfibrils bundles in the PP matrix. A comparative analysis showed that the composites developed in this study present similar or even superior mechanical performance for given filler content to other natural fiber reinforced PP composites reported in the literature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.