Diatoms are considered the main base of the Southern Ocean food web as they are responsible for more than 85% of its annual primary production and play a crucial role in the Antarctic trophic structure and in the biogeochemical cycles. Within this context, an intense diatom bloom reaching > 45 mg m−3 of chlorophyll a was registered in the Northern Antarctic Peninsula (NAP) during a late summer study in February 2016. Given that nutrient concentrations and grazing activities were not identified here as limiting factors on the bloom development, the aim of this study was to evaluate the effect of water column structure (stability and upper mixed layer depth) on the phytoplankton biomass and composition in the NAP. The diatom bloom, mainly composed by the large centric Odontella weissflogii (mostly > 70 μm in length), was associated with a local ocean carbon dioxide uptake that reached values greater than −60 mmol m−2 d−1. We hypothesize that the presence of a vertically large water column stability barrier, just below the pycnocline, was the main driver allowing for the development of the intense diatom bloom, particularly in the Gerlache Strait. Contrarily, a shift from diatoms to dinoflagellates (mainly Gymnodiniales < 20 μm) was observed associated with conditions of a highly stable thin layer. The results suggest that a large fraction of this intense diatom bloom is in fast sinking process, associated with low grazing pressure, showing a crucial role of diatoms for the efficiency of the biological carbon pump in this region.
We show an annual overview of the sea-air CO2 exchanges and primary drivers in the Gerlache Strait, a hotspot for climate change that is ecologically important in the northern Antarctic Peninsula. In autumn and winter, episodic upwelling events increase the remineralized carbon in the sea surface, leading the region to act as a moderate or strong CO2 source to the atmosphere of up to 40 mmol m–2 day–1. During summer and late spring, photosynthesis decreases the CO2 partial pressure in the surface seawater, enhancing ocean CO2 uptake, which reaches values higher than − 40 mmol m–2 day–1. Thus, autumn/winter CO2 outgassing is nearly balanced by an only 4-month period of intense ocean CO2 ingassing during summer/spring. Hence, the estimated annual net sea-air CO2 flux from 2002 to 2017 was 1.24 ± 4.33 mmol m–2 day–1, opposing the common CO2 sink behaviour observed in other coastal regions around Antarctica. The main drivers of changes in the surface CO2 system in this region were total dissolved inorganic carbon and total alkalinity, revealing dominant influences of both physical and biological processes. These findings demonstrate the importance of Antarctica coastal zones as summer carbon sinks and emphasize the need to better understand local/regional seasonal sensitivity to the net CO2 flux effect on the Southern Ocean carbon cycle, especially considering the impacts caused by climate change.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.