Nitrided TiO2 nanotubes and PDMS microchannel were assembled in a photocatalytic device for organic dyes photo-degradation studies. By integrating a PDMS microchannel with the nitrided TiO2 nanotubes array, a microfluidic photocatalytic device was obtained and characterized by morphological, chemical, and physical points of view. The fabrication process allows an easy integration of the obtained nitrided TiO2 nanotubes with a microchannel into a microfluidic device for pollutant photo-degradation. The high surface-to-volume ratio intrinsic of nanotubes structures has functional properties for harvesting light and is responsible for part of the interesting photocatalytic device performance. Another great advantage of nitrided TiO2 nanotubes compared to just TiO2 nanotubes, is the lower gap of 2.80 eV achieved by plasma nitriding processes in PECVD reactor, which leads to a 14% increase in the photocatalytic response to sun light. As a consequence, the methylene blue reduction efficiency of the microfluidic device fabricated with nitrided TiO2 nanotubes increased 13% compared to that with just anodized TiO2 nanotubes.
In recent years, metal oxides have been widely studied for a number of applications in the electronics and metallurgical industry, being used in anticorrosive coatings, chemical sensors, sensitive optoelectronic devices, among others. Among the metal oxides, TiO2 (titanium oxide) has enormous potential in applications such as gas sensor, pH sensor and in photosensitive devices such as dye sensitized solar cells and for photocatalytic degradation of organic compounds. There are several morphologies that can be obtained for TiO2, but the most interesting one today is ordered arrangements of TiO2 nanotubes produced by the Ti anodization process, which have a larger surface area than other morphologies such as thin films, nanopillars and nanobastones, also presents greater sensitivity to the presence of the gases and/or solutions to be analyzed, as well as greater absorption of photons, besides a smaller recombination of electron-hole pairs in the material. Despite these several advantages, the photocatalytic activity of TiO2 is limited by absorbing only ultraviolet radiation due to its wide gap of approximately 3.2 eV. Thus, in this work, TiO2 nanotubes were produced by the anodic oxidation process of Ti, with different parameters, correlating them with the resulting morphology. With this, it was possible to observe that the length and external diameter of the TiO2 nanotubes grow proportionally with the increase of the voltage, being approximately linear up to a given value of saturation. The exception to this relates to TiO2 nanotubes grown from Ti deposited and glass substrates, in which, there is a limitation of Ti to be anodized, so that after the total conversion of Ti to oxide, there is no longer growth of nanotubes, but the diameters generated respect the same values for cases in which there is no such limitation. The as grown TiO2 nanotubes were submitted to nitriding processes in a plasma assisted chemical vapor deposition reactor and the parameters were evaluated in order to find the best conditions to decrease their gap in order to increase their photocatalytic activity. Pressure and radio frequency power were varied from 0.66 to 2.66 mBar (0.50 to 2.00 Torr) and 0.22 to 3.51 W/cm 2 respectively. The largest decrease in the gap value, to 2.80 eV, was obtained using the pressure of 1.33 mbar (1.00 Torr), 1.57 W/cm 2 of radio frequency power during a process of 2 h in 320 °C, leading to a 14% decrease in gap value and a 25% increase in photocatalytic activity (reduction of Methylene Blue). This decrease in the value of the optical gap doubles the absorption range of photons from 5% to 10% of the solar spectrum. The nitrided TiO2 nanotubes produced with a gap of 2.80 eV were easily integrated into a microchannel of polydimethylsiloxane, producing a photocatalytic device for the study of photodegradation of organic compounds, and could be used to reduce pollutants. The photocatalytic device completely reduced 5 L of Methylene Blue solution in about 12 min, with an approximately linear rate of 130 M/h, where...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.