Obesity is currently one of the major epidemics of this millennium and affects individuals throughout the world. It causes multiple systemic complications, some of which result in severe impairment of organs and tissues. These complications involve mechanical changes caused by the accumulation of adipose tissue and the numerous cytokines produced by adipocytes. Obesity also significantly interferes with respiratory function by decreasing lung volume, particularly the expiratory reserve volume and functional residual capacity. Because of the ineffectiveness of the respiratory muscles, strength and resistance may be reduced. All these factors lead to inspiratory overload, which increases respiratory effort, oxygen consumption, and respiratory energy expenditure. It is noteworthy that patterns of body fat distribution significantly influence the function of the respiratory system, likely via the direct mechanical effect of fat accumulation in the chest and abdominal regions. Weight loss caused by various types of treatment, including low-calorie diet, intragastric balloon, and bariatric surgery, significantly improves lung function and metabolic syndrome and reduces body mass index. Despite advances in the knowledge of pulmonary and systemic complications associated with obesity, longitudinal randomized studies are needed to assess the impact of weight loss on metabolic syndrome and lung function.
Background: Several studies point to a correlation between obesity and the severity of depressive and anxiety symptoms in children and adults, but there are still some controversial points about this association. The aim of this study is to investigate the relationship between body composition and the severity of anxiety/depressive symptoms in overweight and obese individuals with Metabolic Syndrome (MS). Methods: Fifty patients, 18-50 years old, overweight or obese and with the diagnosis of MS based on the International Diabetes Federation (IDF) criteria were selected for this study. Body composition was evaluated using Dual Energy X-ray Absorptiometry (DXA). Depressive symptoms were evaluated using the Hospital Anxiety and Depression Scale (HADS-Depression) and the Beck Depression Inventory (BDI). Anxiety symptoms were evaluated using HADS-Anxiety. Results: No correlation was found between depressive symptoms (HADS-Depression or BDI) and Body Mass Index (BMI) (r = 0.01; p = 0.94 and r = −0.12, p = 0.38; respectively), Waist Circumference (WC) (r = −0.06, p = 0.67 and r = −0.22, p = 0.12; respectively), and Waist-to-Hip Ratio (WHR) (r = −0.12, p = 0.40 and r = −0.17, p = 0.23; respectively). Additionally, no correlation was found among anxiety symptoms (HADS-Anxiety) and BMI (r = −0.15, p = 0.27), and WHR (r = −0.17, p = 0.24). In contrast, a significant correlation was found between percentage of total fat (DXA) and HADS-Depression (r = 0.34, p = 0.019) and HADS-Anxiety (r = 0.30, p = 0.039). Additionally, an inverse and strong correlation was found between lean mass (in grams) and HADS-Depression (r = −0.42, p = 0.004), HADS anxiety (r = −0.57, p < 0.0001), and BDI (r = −0.44, p = 0.026). Conclusions: In individuals with MS, the percentage of body fat, and not central fat, BMI, WC, or WHR, was associated with an increased severity of anxiety and depressive symptoms. In contrast, total lean mass was strongly associated with fewer anxiety/depressive symptoms, suggesting that body composition might be related to psychiatric comorbidity in overweight individuals with MS.
Objectives The aim of this study was to describe findings from lung ultrasound (LUS) and computed tomography (CT) in health professionals with coronavirus disease 2019 pneumonia and to evaluate the associations of the findings of both tests. Methods This cross‐sectional observational study evaluated 45 health professionals who were initially seen in screening tents and had a diagnosis of coronavirus disease 2019 as confirmed by a reverse transcription polymerase chain reaction and lung involvement diagnosed by LUS. Subsequently, these individuals were admitted to the hospital, where chest CT was performed. Aeration scores were obtained for the LUS examinations based on the following findings: more than 2 B‐lines, coalescent B‐lines, and subpleural consolidations. A subjective assessment of the extent of lung disease on CT was performed on the basis of the percentage of lung parenchyma involvement as follows: 25% or less, 25% to 50%, and greater than 50%. Results Regarding LUS signs, more than 2 B‐lines, coalescent B‐lines, and subpleural consolidations were present in 73.3%, 68.2%, and 24.4% of cases, respectively. The main findings on CT were ground glass opacities, a crazy‐paving pattern, and consolidations (66.7%, 20%, and 20% of cases); 17.8% of cases had examinations without abnormalities. Patients with more than 2 B‐lines on LUS had more ground glass opacity areas on CT ( P = .0007), whereas patients with subpleural consolidations on LUS had more consolidations on CT ( P < .0001). In addition, patients with higher LUS aeration scores had more extensive disease on CT ( P < .0001). Conclusions Lung ultrasound can detect lung injury even in the presence of normal CT results. There are associations between the abnormalities detected by both methods, and a relationship also exists between LUS aeration scores and the disease extent on CT.
Background Thousands of people worldwide are suffering the consequences of coronavirus disease-2019 (COVID-19), and impulse oscillometry (IOS) and lung ultrasound (LUS) might be important tools for the follow-up of this population. Our objective was to prospectively evaluate abnormalities detected using these two methods in a cohort of COVID-19 survivors with respiratory symptoms. Methods In this follow-up study, 59 patients underwent clinical evaluations, spirometry, IOS and LUS in the 2nd (M1) and 5th (M2) months after diagnostic confirmation of COVID-19 by real-time reverse transcriptase–polymerase chain reaction. Aeration scores were obtained from the LUS exams based on the following findings: B-lines >2, coalescent B-lines, and subpleural consolidations. Results Fifty-nine (100%) participants had cough and/or dyspnea at M1, which decreased to 38 (64.4%) at M2 (p = 0.0001). Spirometry was abnormal in 26 (44.1%) and 20 (33.9%) participants at M1 and M2, respectively, although without statistical significance (p = 0.10). Normal examination, restrictive patterns, and obstructive patterns were observed in 33 (55.9%), 18 (30.5%), and 8 (13.6%) participants, respectively, at M1 and in 39 (66.1%), 13 (22%), and 7 (11.9%) participants at M2 (p = 0.14). Regarding IOS, considering changes in resistive and reactive parameters, abnormal exams were detected in 52 (88.1%) and 42 (71.2%) participants at M1 and M2, respectively (p = 0.002). Heterogeneity of resistance between 4 and 20 Hz >20% was observed in 38 (64.4%) and 33 (55.9%) participants at M1 and M2, respectively (p = 0.30). Abnormal LUS was observed in 46 (78%) and 36 (61%) participants at M1 and M2, respectively (p = 0.002), with a reduction in aeration scores between M1 and M2 [5 (2–8) vs. 3 (0–6) points, p<0.0001]. Conclusions IOS and LUS abnormalities are frequent in the first 5 months post-COVID-19 infection; however, when prospectively evaluated, significant improvement is evident in the parameters measured by these two methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.