Multiple scattering of seismic waves is often seen as a nightmare for conventional migration techniques that generally rely on a ballistic or a single‐scattering assumption. In heterogeneous areas such as volcanoes, the multiple‐scattering contribution limits the imaging‐depth to one scattering mean free path, the mean distance between two successive scattering events for body waves. In this Letter, we propose a matrix approach of passive seismic imaging that pushes back this fundamental limit by making an efficient use of scattered body waves drowned into a noisy seismic coda. As a proof of concept, the case of the Erebus volcano in Antarctica is considered. The Green's functions between a set of geophones placed on top of the volcano are first retrieved by the cross correlation of coda waves induced by multiple icequakes. This set of impulse responses forms a reflection matrix. By combining a matrix discrimination of singly scattered waves with iterative time reversal, we are able to push back the multiple scattering limit beyond 10 scattering mean free paths. The matrix approach reveals the internal structure of the Erebus volcano: A chimney‐shaped structure at shallow depths, a magma reservoir at 2,500 m and several cavities at sea level and below it. The matrix approach paves the way toward a greatly improved monitoring of volcanic structures at depth. Beyond this specific case, the matrix approach of seismic imaging can generally be applied to all scales and areas where multiple scattering events undergone by body waves prevent in‐depth imaging of the Earth's crust.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.