Characterization and modelling of primary settlers have been neglected pretty much to date. However, whole plant and resource recovery modelling requires primary settler model development, as current models lack detail in describing the dynamics and the diversity of the removal process for different particulate fractions. This paper focuses on the improved modelling and experimental characterization of primary settlers. First, a new modelling concept based on particle settling velocity distribution is proposed which is then applied for the development of an improved primary settler model as well as for its characterization under addition of chemicals (chemically enhanced primary treatment, CEPT). This model is compared to two existing simple primary settler models (Otterpohl and Freund; Lessard and Beck), showing to be better than the first one and statistically comparable to the second one, but with easier calibration thanks to the ease with which wastewater characteristics can be translated into model parameters. Second, the changes in the activated sludge model (ASM)-based chemical oxygen demand fractionation between inlet and outlet induced by primary settling is investigated, showing that typical wastewater fractions are modified by primary treatment. As they clearly impact the downstream processes, both model improvements demonstrate the need for more detailed primary settler models in view of whole plant modelling.
Theoretical studies have shown that discharges from retention tanks could have a negative impact on the WWTP's (Wastewater Treatment Plant) effluent. Characterization of such discharges is necessary to better understand these impacts. This study aims at: (1) characterizing water quality during emptying of a tank; and (2) characterizing the temporal variation of settling velocities of the waters released to the WWTP. Two full-scale sampling campaigns (18 rain events) have been realized in Quebec City and laboratory analyses have shown a wide variability of total suspended solids (TSS) and Chemical Oxygen Demand (COD) concentrations in the water released from the tank. Suspended solids seem to settle quickly because they are only found in large amounts during the first 15 min of pumping to the WWTP. These solids are hypothesized to come from the pumping in which solids remained after a previous event. When these solids are evacuated, low TSS containing waters are pumped from the retention tank. A second concentration peak occurs at the end of the emptying period when the tank is cleaned with wash water. Finally, settling velocity studies allowed characterizing combined sewer wastewaters by separating three main fractions of pollutants which correspond to the beginning, middle and end of emptying. In most cases, it is noticed that particle settling velocities increase as the pollutant load increases.
On-line continuous monitoring of water bodies produces large quantities of high frequency data. Long-term quality control and applicability of these data require rigorous storage and documentation. To carry out these activities successfully, a database has to be built. Such a database should provide the simplicity to store and document all relevant data and should be easy to use for further data evaluation and interpretation. In this paper, a comprehensive database structure for water quality data is proposed. Its goal is to centralize the data, standardize their format, provide easy access, and, especially, document all relevant information (metadata) associated with the measurements in an efficient way. The emphasis on data documentation enables the provision of detailed information not only on the history of the measurements (e.g., where, how, when and by whom was the value measured) but also on the history of the equipment (e.g., sensor maintenance, calibration/validation history), personnel (e.g., experience), projects, sampling sites, etc. As such, the proposed database structure provides a robust and efficient tool for functional data storage and access, allowing future use of data collected at great expense.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.