Abstract. A new version of a street-network model, the Model of Urban Network of Intersecting Canyons and Highways version 2.0 (MUNICH v2.0), is presented. The comprehensive aerosol model SSH-aerosol is implemented in MUNICH v2.0 to simulate the street concentrations of multiple pollutants, including secondary aerosols. The implementation uses the application programming interface (API) technology so that the SSH-aerosol version may be easily updated. New parameterisations are also introduced in MUNICH v2.0, including a non-stationary approach to model reactive pollutants, particle deposition and resuspension, and a parameterisation of the wind at roof level. A test case over a Paris suburb is presented for model evaluation and to illustrate the impact of the new functionalities. The implementation of SSH-aerosol leads to an increase of 11 % in PM10 concentration because of secondary aerosol formation. Using the non-stationary approach rather than the stationary one leads to a decrease in NO2 concentration of 16 %. The impact of particle deposition on built surfaces and road resuspension on pollutant concentrations in the street canyons is low.
The characterization of vehicle exhaust emissions of volatile organic compounds (VOCs) is essential to estimate their impact on the formation of secondary organic aerosol (SOA) and, more generally, air quality. This paper revises and updates non-methane volatile organic compounds (NMVOCs) tailpipe emissions of three Euro 5 vehicles during Artemis cold urban (CU) and motorway (MW) cycles. Positive matrix factorization (PMF) analysis is carried out for the first time on proton transfer reaction time-of-flight mass spectrometer (PTR-ToF-MS) datasets of vehicular emission. Statistical analysis helped to associate the emitted VOCs to specific driving conditions, such as the start of the vehicles, the activation of the catalysts, or to specific engine combustion regimes. Merged PTR-ToF-MS and automated thermal desorption gas chromatography mass spectrometer (ATD-GC-MS) datasets provided an exhaustive description of the NMVOC emission factors (EFs) of the vehicles, thus helping to identify and quantify up to 147 individual compounds. In general, emissions during the CU cycle exceed those during the MW cycle. The gasoline direct injection (GDI) vehicle exhibits the highest EF during both CU and MW cycles (252 and 15 mg/km), followed by the port-fuel injection (PFI) vehicle (24 and 0.4 mg/km), and finally the diesel vehicle (15 and 3 mg/km). For all vehicles, emissions are dominated by unburnt fuel and incomplete combustion products. Diesel emissions are mostly represented by oxygenated compounds (65%) and aliphatic hydrocarbons (23%) up to C22, while GDI and PFI exhaust emissions are composed of monoaromatics (68%) and alkanes (15%). Intermediate volatility organic compounds (IVOCs) range from 2.7 to 13% of the emissions, comprising essentially linear alkanes for the diesel vehicle, while naphthalene accounts up to 42% of the IVOC fraction for the gasoline vehicles. This work demonstrates that PMF analysis of PTR-ToF-MS datasets and GC-MS analysis of vehicular emissions provide a revised and deep characterization of vehicular emissions to enrich current emission inventories.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.