Under strong optical excitation conditions, it is possible to create highly nonequilibrium states of matter. The nuclear response is determined by the rate of energy transfer from the excited electrons to the nuclei and the instantaneous effect of change in electron distribution on the interatomic potential energy landscape. We used femtosecond electron diffraction to follow the structural evolution of strongly excited gold under these transient electronic conditions. Generally, materials become softer with excitation. In contrast, the rate of disordering of the gold lattice is found to be retarded at excitation levels up to 2.85 megajoules per kilogram with respect to the degree of lattice heating, which is indicative of increased lattice stability at high effective electronic temperatures, a predicted effect that illustrates the strong correlation between electronic structure and lattice bonding.
The excitation of a high density of carriers in semiconductors can induce an order-to-disorder phase transition due to changes in the potential-energy landscape of the lattice. We report the first direct resolution of the structural details of this phenomenon in freestanding films of polycrystalline and (001)-oriented crystalline Si, using 200-fs electron pulses. At excitation levels greater than approximately 6% of the valence electron density, the crystalline structure of the lattice is lost in <500 fs, a time scale indicative of an electronically driven phase transition. We find that the relaxation process along the modified potential is not inertial but rather involves multiple scattering towards the disordered state.
We performed polarization-resolved surface second harmonic generation (SHG) experiments on thin films of collagen I and IV molecules, as well as conventional CD measurements. We found that collagen IV presents little CD and no SHG optical activity, whereas collagen I exhibits large chiroptical effects involving both one-electron and excitonic coupling mechanisms. We estimated that these chiral components enhance the SHG signal from fibrillar collagen in biological tissues by typically a factor of 2. By comparing the distinct behaviors of collagens I and IV in SHG microscopy and in surface SHG experiments, we concluded that SHG microscopy is a sensitive probe of the micrometer-scale structural organization of collagen in biological tissues.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.