In modern stromatolites, mineralization results from a complex interplay between microbial metabolisms, the organic matrix, and environmental parameters. Here, we combined biogeochemical, mineralogical, and microscopic analyses with measurements of metabolic activity to characterize the mineralization processes and products in an emergent (<18 months) hypersaline microbial mat. While the nucleation of Mg silicates is ubiquitous in the mat, the initial formation of a Ca-Mg carbonate lamina depends on (i) the creation of a high-pH interface combined with a major change in properties of the exopolymeric substances at the interface of the oxygenic and anoxygenic photoautotrophic layers and (ii) the synergy between two major players of sulfur cycle, purple sulfur bacteria, and sulfate-reducing bacteria. The repetition of this process over time combined with upward growth of the mat is a possible pathway leading to the formation of a stromatolite.
In sedimentary environments, clay and sand are segregated by hydrodynamic processes. Yet, clay coats, thin clay envelopes lining sand grains, are abundant in modern and ancient coastal sedimentary deposits. Here, we present laboratory experiments in which we produced clay-coated quartz sands similar to those observed in modern and ancient estuarine sands. These coats were produced at ambient temperature by mixing exopolymeric substances (EPS) derived from intertidal diatom biofilms with clay minerals and quartz reference materials. The imaging of sediment-EPS mixes using cryo–scanning electron microscopy and atomic force microscopy demonstrated that EPS form organic bridges between clay and quartz. The physicochemical properties of the EPS were characterized independently through wet chemical assays and Fourier transform infrared spectroscopy. The results indicated that several EPS components (e.g., proteins, polysaccharides) had a potential to complex with quartz and clay. Our findings provide novel insights in the importance of biofilms in the aggregation of clay and sand. Detrital coats from ancient estuarine sandstones show textural similarities to the experimental clay-EPS complexes and could be considered as biosignatures of biofilm development and EPS production in past environments.
Porosity and permeability may be preserved in deep sandstone reservoirs by clay coating (mainly chlorite) which limits quartz overgrowths. Chloritization around quartz grains results mainly from mineralogical transformations of pre-existing clays. It is fundamental to study those clay precursors to better understand and predict the location and distribution of clay coatings in subsurface sandstones for petroleum or geothermal prospecting. This paper reports a high-resolution analysis of the composition, distribution and fabric of clays along a modern estuary, the Gironde (south-west France). The scale of the study ranges from thin sections, through sand bar bodies, up to the entire estuary. Results show that clays are detrital and deposited at the same time as sand grains despite strong hydrodynamic conditions. Clays bind to medium-grained sands forming detrital clay grain coats. On average, 26% of detrital sand grains are coated along the entire length of the estuary. Coat thickness varies from 1 lm to more than 200 lm, and coat coverage exceeds 30% in some samples. The turbidity maximum zone position (surface water turbidity from 1 to 10 g l À1 ) in the estuary, which is controlled by seasonal variations in hydrodynamic processes, significantly impacts the location of the maximum clay content and the abundance of coated grains in sandy facies along the estuary. Flocculation in the water column results in the accumulation of suspended matter and contributes to the high turbidity in the estuary. Exopolymeric substances produced by diatoms are observed both in the field and by cryo-scanning electron microscopy, suggesting that they may play a major role in binding detrital clay around sand grains. Finally, tidal bars and heterolithic point bars in the estuary funnel and estuarine channels are prime sedimentological targets for finding clay coatings and potentially good reservoir quality in deeply buried sandstones.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.