Techniques combining machine learning with translation to automated reasoning have recently become an important component of formal proof assistants. Such "hammer" techniques complement traditional proof assistant automation as implemented by tactics and decision procedures. In this paper we present a unified proof assistant automation approach which attempts to automate the selection of appropriate tactics and tactic-sequences combined with an optimized small-scale hammering approach. We implement the technique as a tactic-level automation for HOL4: TacticToe. It implements a modified A*-algorithm directly in HOL4 that explores different tactic-level proof paths, guiding their selection by learning from a large number of previous tactic-level proofs. Unlike the existing hammer methods, TacticToe avoids translation to FOL, working directly on the HOL level. By combining tactic prediction and premise selection, TacticToe is able to re-prove 39% of 7902 HOL4 theorems in 5 seconds whereas the best single HOL(y)Hammer strategy solves 32% in the same amount of time.
Learning-assisted automated reasoning has recently gained popularity among
the users of Isabelle/HOL, HOL Light, and Mizar. In this paper, we present an
add-on to the HOL4 proof assistant and an adaptation of the HOLyHammer system
that provides machine learning-based premise selection and automated reasoning
also for HOL4. We efficiently record the HOL4 dependencies and extract features
from the theorem statements, which form a basis for premise selection.
HOLyHammer transforms the HOL4 statements in the various TPTP-ATP proof
formats, which are then processed by the ATPs. We discuss the different
evaluation settings: ATPs, accessible lemmas, and premise numbers. We measure
the performance of HOLyHammer on the HOL4 standard library. The results are
combined accordingly and compared with the HOL Light experiments, showing a
comparably high quality of predictions. The system directly benefits HOL4 users
by automatically finding proofs dependencies that can be reconstructed by
Metis
Many proof assistant libraries contain formalizations of the same mathematical concepts. The concepts are often introduced (defined) in different ways, but the properties that they have, and are in turn formalized, are the same. For the basic concepts, like natural numbers, matching them between libraries is often straightforward, because of mathematical naming conventions. However, for more advanced concepts, finding similar formalizations in different libraries is a non-trivial task even for an expert. In this paper we investigate automatic discovery of similar concepts across libraries of proof assistants. We propose an approach for normalizing properties of concepts in formal libraries and a number of similarity measures. We evaluate the approach on HOL based proof assistants HOL4, HOL Light and Isabelle/HOL, discovering 398 pairs of isomorphic constants and types. ⋆ The final publication is available at http://link.springer.com.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.