Erythritol is an important nutrient for several α-2 Proteobacteria, including N 2-fixing plant endosymbionts and Brucella, a worldwide pathogen that finds this four-carbon polyol in genital tissues. Erythritol metabolism involves phosphorylation to L-erythritol-4-phosphate by the kinase EryA and oxidation of the latter to L-3-tetrulose 4-phosphate by the dehydrogenase EryB. It is accepted that further steps involve oxidation by the putative dehydrogenase EryC and subsequent decarboxylation to yield triose-phosphates. Accordingly, growth on erythritol as the sole C source should require aldolase and fructose-1,6-bisphosphatase to produce essential hexose-6-monophosphate. However, we observed that a mutant devoid of fructose-1,6-bisphosphatases grew normally on erythritol and that EryC, which was assumed to be a dehydrogenase, actually belongs to the xylose isomerase superfamily. Moreover, we found that TpiA2 and RpiB, distant homologs of triose phosphate isomerase and ribose 5-phosphate isomerase B, were necessary, as previously shown for Rhizobium. By using purified recombinant enzymes, we demonstrated that L-3-tetrulose-4-phosphate was converted to D-erythrose 4-phosphate through three previously unknown isomerization reactions catalyzed by EryC (tetrulose-4-phosphate racemase), TpiA2 (D-3-tetrulose-4-phosphate isomerase; renamed EryH), and RpiB (D-erythrose-4-phosphate isomerase; renamed EryI), a pathway fully consistent with the isotopomer distribution of the erythrose-4-phosphate-derived amino acids phenylalanine and tyrosine obtained from bacteria grown on 13 C-labeled erythritol. D-Erythrose-4-phosphate is then converted by enzymes of the pentose phosphate pathway to glyceraldehyde 3-phosphate and fructose 6-phosphate, thus bypassing fructose-1,6-bisphosphatase. This is the first description to our knowledge of a route feeding carbohydrate metabolism exclusively via D-erythrose 4-phosphate, a pathway that may provide clues to the preferential metabolism of erythritol by Brucella and its role in pathogenicity.rucellosis is a widespread bacterial zoonosis caused by the facultative intracellular pathogens Brucella spp. Domestic ruminants and swine, which altogether represent more than 4 billion animals worldwide, are highly susceptible, and in this livestock, the brucellae characteristically target the genital organs and cause abortion and infertility (1). Close to parturition, these bacteria reach exceedingly high numbers (up to 10 14 bacteria per conceptus) (2), thus making brucellosis abortion a highly contagious condition.It is accepted that this tropism and extensive multiplication relate to the high erythritol concentration in the genital organs of those animals (3, 4). In vitro, this four-carbon polyol is a preferential carbon source of Brucella, promotes growth, and up-regulates the expression of major virulence factors and key enzymes of central metabolism (5-9). In vivo, it has been observed that parenteral injections of erythritol increase the numbers of Brucella in the spleens of intraperitoneally...
In the present work the impact of large production scale was investigated for Bacillus megaterium expressing green fluorescent protein (GFP). Specifically designed scale-down studies, mimicking the intermittent and continuous nutrient supply of large- and small-scale processes, were carried out for this purpose. The recombinant strain revealed a 40% reduced GFP yield for the large-scale conditions. In line with extended carbon loss via formation of acetate and carbon dioxide, this indicated obvious limitations in the underlying metabolism of B. megaterium under the large-scale conditions. Quantitative analysis of intracellular amino acids via validated fast filtration protocols revealed that their level strongly differed between the two scenarios. During cultivation in large-scale set-up, the availability of most amino acids, serving as key building blocks of the recombinant protein, was substantially reduced. This was most pronounced for tryptophan, aspartate, histidine, glutamine, and lysine. In contrast alanine was increased, probably related to a bottleneck at the level of pyruvate which also triggered acetate overflow metabolism. The pre-cursor quantifications could then be exploited to verify the presumed bottlenecks and improve recombinant protein production under large-scale conditions. Addition of only 5 mM tryptophan, aspartate, histidine, glutamine, and lysine to the feed solution increased the GFP yield by 100%. This rational concept of driving the lab scale productivity of recombinant microorganisms under suboptimal feeding conditions emulating large scale can easily be extended to other processes and production hosts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.