We present the chemical analysis of 49 giant stars of the globular cluster NGC 2419, using medium resolution spectra collected with the multi-object spectrograph DEIMOS@Keck. Previous analysis of this cluster revealed a large dispersion in the line strength of the infrared Ca II triplet, suggesting an intrinsic star-to-star scatter in its Fe or Ca content. From our analysis, we assess that all the investigated stars share the same [Fe/H], [Ca/Fe] and [Ti/Fe] abundance ratios, while a large spread in Mg and K abundances is detected. The distribution of [Mg/Fe] is bimodal, with ∼40 per cent of the observed targets having subsolar [Mg/Fe], down to [Mg/Fe] ∼ −1 dex, a level of Mg deficiency never observed before in globular clusters. It is found that the large dispersion in Mg abundances is likely the main origin of the observed dispersion of the Ca II triplet lines strengths (that can be erroneously interpreted in terms of Fe or Ca abundance scatter) because Mg plays a relevant role in the atmosphere of giant stars as an electron donor. A strong depletion in the Mg abundance leads to an increase of the line strength of the Ca II triplet, due to the variation in the electronic pressure, at a constant Fe and Ca abundance. Finally, we detect an anti-correlation between Mg and K abundances, not easily explainable within the framework of the current nucleosynthesis models.
The HERMES spectrograph installed on the 1.2-m Mercator telescope has been used to monitor the radial velocity of 13 lowmetallicity carbon stars, among which seven carbon-enhanced metal-poor (CEMP) stars and six CH stars (including HIP 53522, a new member of the family, as revealed by a detailed abundance study). All stars but one show clear evidence for binarity. New orbits are obtained for eight systems. The sample covers an extended range in orbital periods, extending from 3.4 d (for the dwarf carbon star HE 0024-2523) to about 54 yr (for the CH star HD 26, the longest known among barium, CH, and extrinsic S stars). Three systems exhibit low-amplitude velocity variations with periods close to 1 yr superimposed on a long-term trend. In the absence of an accurate photometric monitoring of these systems, it is not clear yet whether these variations are the signature of a very lowmass companion or of regular envelope pulsations. The period -eccentricity (P − e) diagram for the 40 low-metallicity carbon stars with orbits now available shows no difference between CH and CEMP-s stars (the latter corresponding to those CEMP stars enriched in s-process elements, as are CH stars). We suggest that they must be considered as one and the same family and that their different names only stem from historical reasons. Indeed, these two families have as well very similar mass-function distributions, corresponding to companions with masses in the range 0.5-0.7 M , indicative of white-dwarf companions, adopting 0.8-0.9 M for the primary component. This result confirms that CH and CEMP-s stars obey the same mass-transfer scenario as their highermetallicity analogues, barium stars. The P − e diagrams of barium, CH, and CEMP-s stars are indeed very similar. They reveal two different groups of systems: one with short orbital periods (P < 1000 d) and mostly circular or almost circular orbits, and another with longer period and eccentric (e > 0.1) orbits. These two groups either trace different evolutionary channels during the mass-transfer episode responsible for the chemical peculiarities of the Ba/CH/CEMP-s stars, or result from the operation of tidal circularisation in a more recent past, when the current giant star was ascending the first giant branch.
Context. Barium stars are s-process enriched giants. They owe their chemical peculiarities to a past mass transfer phase. During this phase they were polluted by their binary companion, which at the time was an asymptotic giant branch (AGB) star, but is now an extinct white dwarf. Barium stars are thus ideal targets for understanding and constraining the s-process in low- and intermediate-mass AGB stars. Aims. We derive the abundances of a large number of heavy elements in order to shed light on the conditions of operation of the neutron source responsible for the production of s-elements in the former companions of the barium stars. Methods. Adopting a recently used methodology, we analyse a sample of eighteen highly enriched barium stars observed with the high-resolution HERMES spectrograph mounted on the Mercator telescope (La Palma). We determine the stellar parameters and abundances using MARCS model atmospheres. In particular, we derive the Nb–Zr ratio which was previously shown to be a sensitive thermometer for the s-process nucleosynthesis. Indeed, in barium stars, 93Zr has fully decayed into mono-isotopic 93Nb, so Nb/Zr is a measure of the temperature-sensitive 93Zr/Zr isotopic ratio. Results. HD 28159, previously classified as K5III and initially selected to serve as a reference cool K star for our abundance analysis, turns out to be enriched in s-process elements, and as such is a new barium star. Four stars are characterised by high nitrogen abundances, and among those three have high [Nb/Zr] and [hs/ls] ratios. The derived Zr and Nb abundances provide more accurate constraints on the s-process neutron source, identified to be 13C(α, n)16O for barium stars. The comparison with stellar evolution and nucleosynthesis models shows that the investigated barium stars were polluted by a low-mass (M ∼ 2 − 3 M⊙) AGB star. HD 100503 is potentially identified as a high metallicity analogue of carbon-enhanced metal-poor star enriched in both r- and s-process elements (CEMP-rs).
We derive [K/Fe] abundance ratios for 119 stars in the globular cluster NGC 2808, all of them having O, Na, Mg and Al abundances homogeneously measured in previous works. We detect an intrinsic star-to-star spread in the Potassium abundance. Moreover [K/Fe] abundance ratios display statistically significant correlations with [Na/Fe] and [Al/Fe], and anti-correlations with [O/Fe] and [Mg/Fe]. All the four Mg deficient stars ([Mg/Fe]<0.0) discovered so far in NGC 2808 are enriched in K by ∼0.3 dex with respect to those with normal [Mg/Fe].NGC 2808 is the second globular cluster, after NGC 2419, where a clear Mg-K anti-correlation is detected, albeit of weaker amplitude. The simultaneous correlation/anti-correlation of [K/Fe] with all the light elements usually involved in the chemical anomalies observed in globular cluster stars, strongly support the idea that these abundance patterns are due to the same self-enrichment mechanism that produces Na-O and Mg-Al anti-correlations. This finding suggests that detectable spreads in K abundances may be typical in the massive globular clusters where the self-enrichment processes are observed to produce their most extreme manifestations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.