The unsteady loads in a tube bundle are studied at moderate and high Reynolds number by means of URANS and hybrid (DDES) modelling. The onset of fluid-elastic instability is analysed for different structural parameters, Scruton number and reduced velocity. The simulations have been carried out with the code NSMB (Navier-Stokes Multi Block) by using turbulence modelling methods URANS and DDES (Delayed Detached Eddy Simulation). The CEA-DIVA configuration is considered for the cylinders array for an inter-tube Reynolds number 60, 000. The study is carried out for a configuration of (4 × 5) cylinders in static conditions as well as for the vertical free motion of one of the central cylinders in one DOF (Degree Of Freedom).The inter-tube Reynolds number is 60, 000. It is found that this cylinder spontaneously displays an oscillatory motion which first corresponds to Vortex Induced Vibration (VIV), associated to a lock-in mechanism for low values of the reduced velocity and secondly develops Movement Induced Vibration, MIV for higher values of the reduced velocity. The variation of the cylinder's oscillations frequency, of the unsteady loads and the structure's displacement are studied as a function of the reduced velocity for low and high values of the Scruton number. The increase of the phase-lag between the forces and the * Corresponding author. displacement is predicted and discussed for different Scruton number values and reduced velocities.
The paper presents the results of direct numerical simulations of the fall of a single freely moving sphere in a vertical circular tube. Most results are obtained for the solid–fluid density ratio ${\rho }_{s} / \rho = 2$. The parametric investigation is carried out depending on the Galileo number defined in Jenny, Dušek & Bouchet J. Fluid Mech., vol. 508, 2004, pp. 201–239. A qualitatively new scenario is found, as compared to that of an unconfined sphere. The primary bifurcation making the sphere deviate from a vertical fall along the tube axis at a constant velocity is of Hopf type. It sets in at a Galileo number (between 155 and 160) similar to that for an unconfined sphere. We find evidence for two stages of the primary regime: a planar trajectory at $G= 160$ and a helical one (at $G= 165$ and 170). At these Galileo numbers, the regime is perfectly periodic, with a slow period corresponding to a Strouhal number only slightly above 0.01. The dynamics is identified as a periodic wake–wall interaction. The helical regime is found to give way directly to chaos between $G= 170$ and $G= 180$. This transition is associated with the onset of vortex shedding in the wake of the falling sphere and with a complex interaction between the unsteady wake and the wall marked by intermittent wake extinction. The effect of density ratio is partly investigated at $G= 250$ by considering three density ratios: 2, 3 and 5. A significant change of behaviour is found between the ratios 3 and 5.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.