Efforts should focus on implementing multi-country, longitudinal seroprevalence and epidemiological studies, validating immune markers of protection, and improving surveillance, including more systematic molecular characterizations of the bacteria. Integrating climate and social factors into disease control strategies represents a high priority for optimizing the public health response and anticipating the geographic evolution of the African meningitis belt.
BackgroundTo facilitate the interpretation of meningococcal meningitis epidemiology in the “African meningitis belt”, we aimed at obtaining serogroup-specific pooled estimates of incidence, carriage and case-carrier ratios for meningococcal meningitis in the African meningitis belt and describe their variations across the endemic, hyperendemic and epidemic context.MethodsWe conducted a systematic review and meta-analysis of studies reporting serogroup-specific meningococcal meningitis monthly incidence and carriage in the same population and time period. Epidemiological contexts were defined as endemic (wet season, no epidemic), hyperendemic (dry season, no epidemic), and epidemic (dry season, epidemic).FindingsEight studies reporting a total of eighty pairs of serogroup-specific meningococcal meningitis incidence and carriage estimates were included in this review. For serogroup A, changes associated with the transition from endemic to hyperendemic incidence and from hyperendemic to epidemic incidence were 15-fold and 120-fold respectively. Changes in carriage prevalence associated with both transitions were 1-fold and 30-fold respectively. For serogroup W and X, the transition from endemic to hyperendemic incidence involved a 4-fold and 1•1-fold increase respectively. Increases in carriage prevalence for the later transition were 7-fold and 1•7-fold respectively. No data were available for the hyperendemic-epidemic transition for these serogroups. Our findings suggested that the regular seasonal variation in serogroup A meningococcal meningitis incidence between the rainy and the dry season could be mainly driven by seasonal change in the ratio of clinical cases to subclinical infections. In contrast appearance of epidemic incidences is related to a substantial increase in transmission and colonisation and to lesser extent with changes in the case-carrier ratio.ConclusionSeasonal change in the rate of progression to disease given carriage together with variations in frequency of carriage transmission should be considered in models attempting to capture the epidemiology of meningococcal meningitis and mainly to predict meningitis epidemics in the African meningitis belt.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.