New Internet of Things (IoT) technologies such as Long Range (LoRa) are emerging which enable power efficient wireless communication over very long distances. Devices typically communicate directly to a sink node which removes the need of constructing and maintaining a complex multihop network. Given the fact that a wide area is covered and that all devices communicate directly to a few sink nodes a large number of nodes have to share the communication medium. LoRa provides for this reason a range of communication options (centre frequency, spreading factor, bandwidth, coding rates) from which a transmitter can choose. Many combination settings are orthogonal and provide simultaneous collision free communications. Nevertheless, there is a limit regarding the number of transmitters a LoRa system can support. In this paper we investigate the capacity limits of LoRa networks. Using experiments we develop models describing LoRa communication behaviour. We use these models to parameterise a LoRa simulation to study scalability. Our experiments show that a typical smart city deployment can support 120 nodes per 3.8 ha, which is not sufficient for future IoT deployments. LoRa networks can scale quite well, however, if they use dynamic communication parameter selection and/or multiple sinks.
Simulators for wireless sensor networks are a valuable tool for system development. However, current simulators can only simulate a single level of a system at once. This makes system development and evolution difficult since developers cannot use the same simulator for both high-level algorithm development and low-level development such as device-driver implementations. We propose cross-level simulation, a novel type of wireless sensor network simulation that enables holistic simultaneous simulation at different levels. We present an implementation of such a simulator, COOJA, a simulator for the Contiki sensor node operating system. COOJA allows for simultaneous simulation at the network level, the operating system level, and the machine code instruction set level. With COOJA, we show the feasibility of the cross-level simulation approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.