Diffusion magnetic resonance imaging (dMRI) data allow to reconstruct the 3D pathways of axons within the white matter of the brain as a tractography. The analysis of tractographies has drawn attention from the machine learning and pattern recognition communities providing novel challenges such as finding an appropriate representation space for the data. Many of the current learning algorithms require the input to be from a vectorial space. This requirement contrasts with the intrinsic nature of the tractography because its basic elements, called streamlines or tracks, have different lengths and different number of points and for this reason they cannot be directly represented in a common vectorial space. In this work we propose the adoption of the dissimilarity representation which is an Euclidean embedding technique defined by selecting a set of streamlines called prototypes and then mapping any new streamline to the vector of distances from prototypes. We investigate the degree of approximation of this projection under different prototype selection policies and prototype set sizes in order to characterise its use on tractography data. Additionally we propose the use of a scalable approximation of the most effective prototype selection policy that provides fast and accurate dissimilarity approximations of complete tractographies.
Diffusion magnetic resonance imaging data allows reconstructing the neural pathways of the white matter of the brain as a set of 3D polylines. This kind of data sets provides a means of study of the anatomical structures within the white matter, in order to detect neurologic diseases and understand the anatomical connectivity of the brain. To the best of our knowledge, there is still not an effective or satisfactory method for automatic processing of these data. Therefore, a manually guided visual exploration of experts is crucial for the purpose. However, because of the large size of these data sets, visual exploration and analysis has also become intractable. In order to make use of the advantages of both manual and automatic analysis, we have developed a new visual data mining tool for the analysis of human brain anatomical connectivity. With such tool, humans and automatic algorithms capabilities are integrated in an interactive data exploration and analysis process. A very important aspect to take into account when designing this tool, was to provide the user with comfortable interaction. For this purpose, we tackle the scalability issue in the different stages of the system, including the automatic algorithm and the visualization and interaction techniques that are used.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.