The paper proposes a Ritz-type solution for free vibration and buckling analysis thinwalled composite and functionally graded sandwich I-beams. The variation of material through the thickness of functionally graded beams follows the power-law distribution.The displacement field is based on the first-order shear deformation theory, which can reduce to non-shear deformable one. The governing equations of motion are derived from Lagrange's equations. Ritz method is used to obtain the natural frequencies and critical buckling loads of thin-walled beams for both non-shear deformable and shear deformable theory. Numerical results are compared to those from previous works and investigate the effects of fiber angle, material distribution, span-to-height's ratio, and shear deformation on the critical buckling loads and natural frequencies of thin-walled I-beams for various boundary conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.