Monobore cementation is defined as where a single production tubing size runs from the pay zone all the way to surface and is cemented in place. This type of well design greatly reduce rig time and cost. The challenge however is to achieve a good cement in the annulus as a well barrier and to have a clean internal tubing after the cementing job to allow for successful production of the well. To achieve a clean internal tubing, a distinct bottom and top plugs were used as a means of mechanical separation. For fluids design, mud had to be thinned down prior to the cementing job and, a designed fiber based spacer system was used to physically scrub any mud-film sticking on the tubing walls. The centralizers and cement system were designed to allow for efficient displacement of mud and hence providing good overall placement and top of cement in the tubing-casing annulus. The cement in the annulus will be verified by pressure testing the annulus to 500 psi higher than previous shoe leak-off. This approach was implemented for the campaign of six wells, all designed with 5-1/2in monobore tubing. The bottomhole static temperature (BHST) of the well ranges from 300 to 350°F. The cementing system also had to be designed to cater to the challenge of this field, having CO2 as high as 60%, high temperatures, and a long open hole section that requires isolation and cement to set within a required timeframe. The cementing jobs were validated by no losses or gains during the job, floats holding at the end of the cementing job, differential pressure of cement prior to bumping the plug, density and pump rates executed as planned, accepted pressure test criteria of the annulus, output validation of cement contamination in pipe and annulus based on fluids and final well information. To further validate this system, the cement bond log was also run as part of the evaluation process and the cement log showed that zonal isolation was achieved. After the perforations, the perforation tool was pulled out to surface and the tool looked very clean with no signs of contaminated mud or cement around the tool. We demonstrate how this unique cementing approach can be a solution for the challenges of monobore cementing and one of the biggest problems of monobore cementing in the industry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.