[1] Water content is a key parameter to monitor in nuclear waste repositories such as the planed underground repository in Bure, France, in the Callovo-Oxfordian (COx) clay formation. High-frequency electromagnetic (HF-EM) measurement techniques, i.e., time or frequency domain reflectometry, offer useful tools for quantitative estimation of water content in porous media. However, despite the efficiency of HF-EM methods, the relationship between water content and dielectric material properties needs to be characterized. Moreover, the high amount of swelling clay in the COx clay leads to dielectric relaxation effects which induce strong dispersion coupled with high absorption of EM waves. Against this background, the dielectric relaxation behavior of the clay rock was studied at frequencies from 1 MHz to 10 GHz with network analyzer technique in combination with coaxial transmission line cells. For this purpose, undisturbed and disturbed clay rock samples were conditioned to achieve a water saturation range from 0.16 to nearly saturation. The relaxation behavior was quantified based on a generalized fractional relaxation model under consideration of an apparent direct current conductivity assuming three relaxation processes: a high-frequency water process and two interface processes which are related to interactions between the aqueous pore solution and mineral particles (adsorbed/hydrated water relaxation, counter ion relaxation and Maxwell-Wagner effects). The frequency-dependent HF-EM properties were further modeled based on a novel hydraulic-mechanical-electromagnetic coupling approach developed for soils. The results show the potential of HF-EM techniques for quantitative monitoring of the hydraulic state in underground repositories in clay formations.
The strength of unsaturated soil is defined by the soil water retention behavior and soil suction acting inside the soil matrix. In order to obtain the suction and moisture profile in the vadose zone, specific measuring techniques are needed. Time domain reflectometry (TDR) conventionally measures moisture at individual points only. Therefore, spatial time domain reflectometry (spatial TDR) was developed for characterizing the moisture content profile along the unsaturated soil strata. This paper introduces an experimental set-up used for measuring dynamic moisture profiles with high spatial and temporal resolution. The moisture measurement method is based on inverse modeling the telegraph equation with a capacitance model of soil/sensor environment using an optimization technique. With the addition of point-wise soil suction measurement using tensiometers, the soil water retention curve (SWRC) can be derived in the transient flow condition instead of the static or steady-state condition usually applied for conventional testing methodologies. The experiment was successfully set up and conducted with thorough validations to demonstrate the functionalities in terms of detecting dynamic moisture profiles, dynamic soil suction, and outflow seepage flux under transient flow condition. Furthermore, some TDR measurements are presented with a discussion referring to the inverse analysis of TDR traces for extracting the dielectric properties of soil. The detected static SWRC is finally compared to the static SWRC measured by the conventional method. The preliminary outcomes underpin the success of applying the spatial TDR technique and also demonstrate several advantages of this platform for investigating the unsaturated soil seepage issue under transient flow conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.