We live in the golden age of distributed computing. Public cloud platforms now offer virtually unlimited compute and storage resources on demand. At the same time, the Software-as-a-Service (SaaS) model brings enterprise-class systems to users who previously could not afford such systems due to their cost and complexity. Alas, traditional data warehousing systems are struggling to fit into this new environment. For one thing, they have been designed for fixed resources and are thus unable to leverage the cloud's elasticity. For another thing, their dependence on complex ETL pipelines and physical tuning is at odds with the flexibility and freshness requirements of the cloud's new types of semi-structured data and rapidly evolving workloads. We decided a fundamental redesign was in order. Our mission was to build an enterprise-ready data warehousing solution for the cloud. The result is the Snowflake Elastic Data Warehouse, or "Snowflake" for short. Snowflake is a multi-tenant, transactional, secure, highly scalable and elastic system with full SQL support and built-in extensions for semi-structured and schema-less data. The system is offered as a pay-as-you-go service in the Amazon cloud. Users upload their data to the cloud and can immediately manage and query it using familiar tools and interfaces. Implementation began in late 2012 and Snowflake has been generally available since June 2015. Today, Snowflake is used in production by a growing number of small and large organizations alike. The system runs several million queries per day over multiple petabytes of data. In this paper, we describe the design of Snowflake and its novel multi-cluster, shared-data architecture. The paper highlights some of the key features of Snowflake: extreme elasticity and availability, semi-structured and schema-less data, time travel, and end-to-end security. It concludes with lessons learned and an outlook on ongoing work.
This paper showcases some of the newly introduced parallel execution methods in Oracle RDBMS. These methods provide highly scalable and adaptive evaluation for the most commonly used SQL operations -joins, group-by, rollup/cube, grouping sets, and window functions. The novelty of these techniques is their use of multi-stage parallelization models, accommodation of optimizer mistakes, and the runtime parallelization and data distribution decisions. These parallel plans adapt based on the statistics gathered on the real data at query execution time. We realized enormous performance gains from these adaptive parallelization techniques. The paper also discusses our approach to parallelize queries with operations that are inherently serial. We believe all these techniques will make their way into big data analytics and other massively parallel database systems.
We consider methods for learning vector representations of SQL queries to support generalized workload analytics tasks, including workload summarization for index selection and predicting queries that will trigger memory errors. We consider vector representations of both raw SQL text and optimized query plans, and evaluate these methods on synthetic and real SQL workloads. We find that general algorithms based on vector representations can outperform existing approaches that rely on specialized features. For index recommendation, we cluster the vector representations to compress large workloads with no loss in performance from the recommended index. For error prediction, we train a classifier over learned vectors that can automatically relate subtle syntactic patterns with specific errors raised during query execution. Surprisingly, we also find that these methods enable transfer learning, where a model trained on one SQL corpus can be applied to an unrelated corpus and still enable good performance. We find that these general approaches, when trained on a large corpus of SQL queries, provides a robust foundation for a variety of workload analysis tasks and database features, without requiring application-specific feature engineering.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.