High aspect ratio nanotubular assemblies can be effective fillers in mechanically reinforced composite materials. However, most existing nanotubes used for structural purposes are limited in their range of mechanical, chemical, and biological properties. We demonstrate an alternative approach to mechanical reinforcement of polymeric systems by incorporating synthetic D,L-cyclic peptide nanotube bundles as a structural filler in electrospun poly D-, L-lactic acid fibers. The nanotube bundles self-assemble through dynamic hydrogen bonding from synthetic cyclic peptides to yield structures whose dimensions can be altered based on processing conditions, and can be up to hundreds of micrometers long and several hundred nanometers wide. With 8 wt % peptide loading, the composite fibers are >5-fold stiffer than fibers composed of the polymer alone, according to atomic force microscopy-based indentation experiments. This represents a new use for self-assembling cyclic peptides as a load-bearing component in biodegradable composite materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.