Phospholipids (PLs) with polyunsaturated acyl chains are extremely abundant in a few specialized cellular organelles such as synaptic vesicles and photoreceptor discs, but their effect on membrane properties is poorly understood. Here, we found that polyunsaturated PLs increased the ability of dynamin and endophilin to deform and vesiculate synthetic membranes. When cells incorporated polyunsaturated fatty acids into PLs, the plasma membrane became more amenable to deformation by a pulling force and the rate of endocytosis was accelerated, in particular, under conditions in which cholesterol was limiting. Molecular dynamics simulations and biochemical measurements indicated that polyunsaturated PLs adapted their conformation to membrane curvature. Thus, by reducing the energetic cost of membrane bending and fission, polyunsaturated PLs may help to support rapid endocytosis.
Stress within the endoplasmic reticulum (ER) induces a coordinated response, namely the unfolded protein response (UPR), devoted to helping the ER cope with the accumulation of misfolded proteins. Failure of the UPR plays an important role in several human diseases. Recent studies report that intracellular accumulation of saturated fatty acids (SFAs) and cholesterol, seen in diseases of high incidence, such as obesity or atherosclerosis, results in ER stress. In the present study, we evaluated the effects of perturbations to lipid homeostasis on ER stress/UPR induction in the model eukaryote Saccharomyces cerevisiae. We show that SFA originating from either endogenous (preclusion of fatty acid desaturation) or exogenous (feeding with extracellular SFA) sources trigger ER stress and that ergosterol, the major sterol in yeast, acts synergistically with SFA in this process. This latter effect is connected to ergosterol accumulation within microsomal fractions from SFA-accumulating cells, which display highly saturated phospholipid content. Moreover, treating the cells with the molecular chaperone 4-phenyl butyrate abolishes UPR induction, suggesting that lipid-induced ER stress leads to an overload of misfolded protein that acts, in turn, as the molecular signal for induction of the UPR. The present data are discussed in the context of human diseases that involve lipid deregulation.
Cellular phospholipids (PLs) differ by the nature of their polar heads as well as by the length and unsaturation level of their fatty acyl chains. We discuss how the ratio between saturated, monounsaturated, and polyunsaturated PLs impacts on the functions of such organelles as the endoplasmic reticulum, synaptic vesicles, and photoreceptor discs. Recent experiments and simulations suggest that polyunsaturated PLs respond differently to mechanical stress, including membrane bending, than monounsaturated PLs owing to their unique conformational plasticity. These findings suggest a rationale for PL acyl chain remodeling by acyltransferases and a molecular explanation for the importance of a balanced fatty acid diet.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.