Anaphylaxis is an acute, severe, and potentially fatal systemic allergic reaction. Immunoglobulin E (IgE), mast cells, and histamine have long been associated with anaphylaxis, but an alternative pathway mediated by IgG has been suggested to be more important in the elicitation of anaphylaxis. Here, we showed that basophils, the least common blood cells, were dispensable for IgE-mediated anaphylaxis but played a critical role in IgG-mediated, passive and active systemic anaphylaxis in mice. In vivo depletion of basophils but not macrophages, neutrophils, or NK cells ameliorated IgG-mediated passive anaphylaxis and rescued mice from death in active anaphylaxis. Upon capture of IgG-allergen complexes, basophils released platelet-activating factor (PAF), leading to increased vascular permeability. These results highlight a pivotal role for basophils in vivo and contrast two major, distinct pathways leading to allergen-induced systemic anaphylaxis: one mediated by basophils, IgG, and PAF and the other "classical" pathway mediated by mast cells, IgE, and histamine.
Cell membranes contain several classes of glycerophospholipids, which have numerous structural and functional roles in the cells. Polyunsaturated fatty acids, including arachidonic acid and eicosapentaenoic acid, are located at the sn-2 (but not sn-1)-position of glycerophospholipids in an asymmetrical manner. Using acyl-CoAs as donors, glycerophospholipids are formed by a de novo pathway (Kennedy pathway) and modified by a remodeling pathway (Lands' cycle) to generate membrane asymmetry and diversity. Both pathways were reported in the 1950s. Whereas enzymes involved in the Kennedy pathway have been well characterized, including enzymes in the 1-acylglycerol-3-phosphate O-acyltransferase family, little is known about enzymes involved in the Lands' cycle. Recently, several laboratories, including ours, isolated enzymes working in the remodeling pathway. These enzymes were discovered not only in the 1-acylglycerol-3-phosphate O-acyltransferase family but also in the membrane-bound O-acyltransferase family. In this review, we summarize recent studies on cloning and characterization of lysophospholipid acyltransferases that contribute to membrane asymmetry and diversity.
All organisms consist of cells that are enclosed by a cell membrane containing bipolar lipids and proteins. Glycerophospholipids are important not only as structural and functional components of cellular membrane but also as precursors of various lipid mediators. Polyunsaturated fatty acids comprising arachidonic acid or eicosapentaenoic acid are located at sn-2 position, but not at sn-1 position of glycerophospholipids in an asymmetrical manner. In addition to the asymmetry, the membrane diversity is important for membrane fluidity and curvature. To explain the asymmetrical distribution of fatty acids, the rapid turnover of sn-2 position was proposed in 1958 by Lands [Lands WE (1958) Metabolism of glycerolipides: A comparison of lecithin and triglyceride synthesis. J Biol Chem 231:883-888]. However, the molecular mechanisms and biological significance of the asymmetry remained unknown. Here, we describe a putative enzyme superfamily consisting mainly of three gene families, which catalyzes the transfer of acyl-CoAs to lysophospholipids to produce different classes of phospholipids. Among them, we characterized three important enzymes with different substrate specificities and tissue distributions; one, termed lysophosphatidylcholine acyltransferase-3 (a mammalian homologue of Drosophila nessy critical for embryogenesis), prefers arachidonoyl-CoA, and the other two enzymes incorporate oleoyl-CoAs to lysophosphatidylethanolamine and lysophosphatidylserine. Thus, we propose that the membrane diversity is produced by the concerted and overlapped reactions with multiple enzymes that recognize both the polar head group of glycerophospholipids and various acyl-CoAs. Our findings constitute a critical milestone for our understanding about how membrane diversity and asymmetry are established and their biological significance.glycerophospholipids ͉ Lands' cycle ͉ membrane remodeling ͉ phospholipase A 2 ͉ acyl-CoA
Platelet-activating factor (PAF) is a potent proinflammatory lipid mediator eliciting a variety of cellular functions. Lipid mediators, including PAF are produced from membrane phospholipids by enzymatic cascades. Although a G protein-coupled PAF receptor and degradation enzymes have been cloned and characterized, the PAF biosynthetic enzyme, aceyl-CoA:lyso-PAF acetyltransferase, has not been identified. Here, we cloned lyso-PAF acetyltransferase, which is critical in stimulusdependent formation of PAF. The enzyme is a 60-kDa microsomal protein with three putative membrane-spanning domains. The enzyme was induced by bacterial endotoxin (lipopolysaccharide), which was suppressed by dexamethasone treatment. Surprisingly, the enzyme catalyzed not only biosynthesis of PAF from lyso-PAF but also incorporation of arachidonoyl-CoA to produce PAF precursor membrane glycerophospholipids (lysophosphatidylcholine acyltransferase activity). Under resting conditions, the enzyme prefers arachidonoyl-CoA and contributes to membrane biogenesis. Upon acute inflammatory stimulation with lipopolysaccharide, the activated enzyme utilizes acetyl-CoA more efficiently and produces PAF. Thus, our findings provide a novel concept that a single enzyme catalyzes membrane biogenesis of inflammatory cells while producing a prophlogistic mediator in response to external stimuli.Platelet-activating factor (PAF 3 ; 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine) is a phospholipid mediator that activates a G protein-coupled receptor (1-3) and results in pleiotropic and potent biological effects, including platelet activation, airway constriction, and hypotension (1). PAF is synthesized in various cells and tissues via two distinct pathways, the de novo and remodeling pathways (2, 4, 5), and the latter is regulated by extracellular signals and plays a critical role in stimulus-coupled PAF biosynthesis (2, 4 -6). PAF synthesis induced by extracellular signals has been reported in murine peritoneal cells stimulated by calcium ionophore (7) or by PAF (8), in human eosinophils stimulated by fMet-Leu-Phe (9), in human neutrophils stimulated by acid stress (10), and in murine peritoneal macrophages stimulated by lipopolysaccharide (LPS) (11). In the remodeling pathway, the precursor of PAF, 1-Oalkyl-sn-glycero-3-phosphocholine (lyso-PAF), is synthesized from 1-O-alkyl-2-arachidonoyl-sn-glycero-3-phosphocholine (1-alkyl-phosphatidylcholine; PC) by the action of phospholipase A 2 (2, 4, 12, 13). Subsequently, lyso-PAF is converted to PAF by acetyl-CoA:lyso-PAF acetyltransferase (lyso-PAF acetyltransferase) (EC 2.3.1.67) (14). PAF is then rapidly degraded to lyso-PAF by PAF acetylhydrolases (15). Alternatively, lyso-PAF is again transformed into PC by the action of lysophosphatidylcholine (LPC) acyltransferase (2.3.1.23) (16).A G protein-coupled PAF receptor was cloned in our laboratory (17), and PAF acetylhydrolases have been cloned and characterized by others (18,19). Lyso-PAF acetyltransferase was initially demonstrated and partially characterized by ...
Cellular membranes are composed of numerous kinds of glycerophospholipids with different combinations of polar heads at the sn-3 position and acyl moieties at the sn-1 and sn-2 positions, respectively. The glycerophospholipid compositions of different cell types, organelles, and inner/outer plasma membrane leaflets are quite diverse. The acyl moieties of glycerophospholipids synthesized in the de novo pathway are subsequently remodeled by the action of phospholipases and lysophospholipid acyltransferases. This remodeling cycle contributes to the generation of membrane glycerophospholipid diversity and the production of lipid mediators such as fatty acid derivatives and lysophospholipids. Furthermore, specific glycerophospholipid transporters are also important to organize a unique glycerophospholipid composition in each organelle. Recent progress in this field contributes to understanding how and why membrane glycerophospholipid diversity is organized and maintained.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.