A new series of panchromatic ruthenium(II) sensitizers derived from carboxylated terpyridyl complexes of tris-thiocyanato Ru(II) have been developed. Black dye containing different degrees of protonation [(C(2)H(5))(3)NH][Ru(H(3)tcterpy)(NCS)(3)] 1, [(C(4)H(9))(4)N](2)[Ru(H(2)tcterpy)(NCS)(3)] 2, [(C(4)H(9))(4)N](3)[Ru(Htcterpy)(NCS)(3)] 3, and [(C(4)H(9))(4)N](4)[Ru(tcterpy)(NCS)(3)] 4 (tcterpy = 4,4',4' '-tricarboxy-2,2':6',2' '-terpyridine) have been synthesized and fully characterized by UV-vis, emission, IR, Raman, NMR, cyclic voltammetry, and X-ray diffraction studies. The crystal structure of complex 2 confirms the presence of a Ru(II)N6 central core derived from the terpyridine ligand and three N-bonded thiocyanates. Intermolecular H-bonding between carboxylates on neighboring terpyridines gives rise to 2-D H-bonded arrays. The absorption and emission maxima of the black dye show a bathochromic shift with decreasing pH and exhibit pH-dependent excited-state lifetimes. The red-shift of the emission maxima is due to better pi-acceptor properties of the acid form that lowers the energy of the CT excited state. The low-energy metal-to-ligand charge-transfer absorption band showed marked solvatochromism due to the presence of thiocyanate ligands. The Ru(II)/(III) oxidation potential of the black dye and the ligand-based reduction potential shifted cathodically with decreasing number of protons and showed more reversible character. The adsorption of complex 3 from methoxyacetonitrile solution onto transparent TiO(2) films was interpreted by a Langmuir isotherm yielding an adsorption equilibrium constant, K(ads), of (1.0 +/- 0.3) x 10(5) M(-1). The amount of dye adsorbed at monolayer saturation was (n(alpha) = 6.9 +/- 0.3) x 10(-)(8) mol/mg of TiO(2), which is around 30% less than that of the cis-di(thiocyanato)bis(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(II) complex. The black dye, when anchored to nanocrystalline TiO(2) films achieves very efficient sensitization over the whole visible range extending into the near-IR region up to 920 nm, yielding over 80% incident photon-to-current efficiencies (IPCE). Solar cells containing the black dye were subjected to analysis by a photovoltaic calibration laboratory (NREL, U.S.A.) to determine their solar-to-electric conversion efficiency under standard AM 1.5 sunlight. A short circuit photocurrent density obtained was 20.5 mA/cm(2), and the open circuit voltage was 0.72 V corresponding to an overall conversion efficiency of 10.4%.
Ruthenium sensitizers of the type trans-[Ru(L(1))(X)(2)], trans-[Ru(L(2))(X)(2)], trans-[Ru(L(3))(X)(2)], and trans-[Ru(L(4))(X)(2)] (where L(1) = 6,6'-bis(1-H-benzimidazol-2-yl)-4,4'-bis(methoxycarbonyl)-2,2'-bipyridine, L(2) = 4,4' "-bis(tert-butyl)-4',4' '-bis[p-(methoxycarbonyl)phenyl]-2,2':6',2' ':6' ',2' "-quaterpyridine, L(3) = 4',4' '-bis[3,4-(dimethoxy)phenyl]-2,2':6',2' ':6' ',2' "-quaterpyridine, and L(4) = 4',4' '-diethoxycarbonyl-2,2':6',2' ':6' ',2' "-quaterpyridine; X = Cl(-), NCS(-)) were synthesized and characterized by CV, NMR, and UV-vis absorption and emission spectroscopy. The trans-dichloro and dithiocyanate complexes show MLCT transitions in the entire visible and near-IR region. The lowest energy metal-to-ligand charge-transfer transition band of the trans-dichloro complexes is around 14 300 cm(-1) in DMF solution, and these complexes show weak and broad emission signals with onset at above 10 500 cm(-1). The absorption and emission maxima of the trans-dithiocyanate complexes are blue-shifted compared to those of its trans-dichloro analogues because of the strong pi acceptor property of the NCS(-) compared to the Cl(-). The electronic spectra of trans-[Ru(L)(X)(2)] complexes were calculated by INDO/S and compared with the experimental data. The extent of mixing between metal 4d and ligand pi orbitals is discussed. Extensive pi-back-donation is observed. The panchromatic response of these novel complexes renders them as suitable sensitizers for solar energy conversion applications based on titanium dioxide mesoporous electrodes. Preliminary results using the trans-[Ru(L(4))(NCS)(2)] complex show 75% incident photon-to-current efficiencies (IPCE), yielding 18 mA/cm(2) current density under standard AM 1.5 sunlight.
Metal complexes of pyridine and bipyridine‐type ligands represent an important class of nonlinear optical (NLO) materials: (i) They can incorporate a variety of functionalised ligands with a wide range of metals which can give rise to tuneable NLO properties; (ii) they are generally associated with intense low‐lying charge‐transfer excitations such as metal to ligand charge‐transfer (MLCT) or intraligand charge‐transfer (ILCT); (iii) bipyridyl ligands are also good building blocks that allow the construction of octupolar complexes with a defined geometry and symmetry. This review describes the recent developments in the design of such dipolar and octupolar chromophores for second‐order nonlinear optics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.