The dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A) gene is located within the Down Syndrome (DS) critical region on chromosome 21 and is implicated in the generation of Tau and amyloid pathologies that are associated with the early onset Alzheimer's Disease (AD) observed in DS. DYRK1A is also found associated with neurofibrillary tangles in sporadic AD and phosphorylates key AD players (Tau, amyloid precursor, protein, etc). Thus, DYRK1A may be an important therapeutic target to modify the course of Tau and amyloid beta (Ab) pathologies. Here, we describe EHT 5372 (methyl 9-(2,4-dichlorophenylamino) thiazolo[5,4-f]quinazoline-2-carbimidate), a novel, highly potent (IC 50 = 0.22 nM) DYRK1A inhibitor with a high degree of selectivity over 339 kinases. Models in which inhibition of DYRK1A by siRNA reduced and DYRK1A over-expression induced Tau phosphorylation or Ab production were used. EHT 5372 inhibits DYRK1A-induced Tau phosphorylation at multiple AD-relevant sites in biochemical and cellular assays. EHT 5372 also normalizes both Ab-induced Tau phosphorylation and DYRK1A-stimulated Ab production. DYRK1A is thus as a key element of Abmediated Tau hyperphosphorylation, which links Tau and amyloid pathologies. EHT 5372 and other compounds in its class warrant in vivo investigation as a novel, high-potential therapy for AD and other Tau opathies.
The arachidonic acid metabolizing enzymes cyclooxygenase-2 (COX-2) and lipoxygenases (LOXs) have been found to be implicated in a variety of cancers, including prostate cancer. To develop new therapeutic treatments, it therefore seemed interesting to design dual COX-2/5-LOX inhibitors. We report here the synthesis and in vitro pharmacological properties of diarylpyrazole derivatives that have in their structure key pharmacophoric elements to obtain optimal interaction with subsites of active pockets in both enzyme systems. Using a molecular modeling approach, a set of SAR data is proposed, highlighting the importance of the sulfonyl group of one of the aryl moieties in terms of proliferation inhibition and/or apoptosis induction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.