Neurologic morbidity associated with congenital cytomegalovirus (CMV) infection is a major public health concern. The pathogenesis of cerebral lesions remains unclear. We report the neuropathologic substrates, the immune response, and the cellular targets of CMV in 16 infected human fetal brains aged 23 to 28.5 gestational weeks. Nine cases were microcephalic, 10 had extensive cortical lesions, 8 had hippocampal abnormalities, and 5 cases showed infection of the olfactory bulb. The density of CMV-immunolabeled cells correlated with the presence of microcephaly and the extent of brain abnormalities. Innate and adaptive immune responses were present but did not react against all CMV-infected cells. Cytomegalovirus infected all cell types but showed higher tropism for stem cells/radial glial cells. The results indicate that 2 main factors influence the neuropathologic outcome at this stage: the density of CMV-positive cells and the tropism of CMV for stem/progenitor cells. This suggests that the large spectrum of CMV-induced brain abnormalities is caused not only by tissue destruction but also by the particular vulnerability of stem cells during early brain development. Florid infection of the hippocampus and the olfactory bulb may expose these patients to the risk of neurocognitive and sensorineural handicap even in cases of infection at late stages of gestation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.