Sum-Frequency Vibrational Spectroscopy (SFVS) has been used to investigate the effect of nitrogen-flow drying on the molecular ordering of Layer-by-Layer (LbL) films of poly(allylamine hydrochloride) (PAH) alternated with poly(styrene sulfonate) (PSS). We find that films dried by spontaneous water evaporation are more ordered and homogeneous than films dried by nitrogen flow. The latter are quite inhomogeneous and may have regions with highly disordered polymer conformation. We propose that drying by spontaneous water evaporation reduces the effect of drag by the drying front, while during nitrogen-flow drying the fast evaporation of water "freezes" the disordered conformation of adsorbed polyelectrolyte molecules. These findings are important for many applications of LbL films, since device performance usually depends on film morphology and its molecular structure.
Adsorption of alkylthiol self-assembled monolayers on gold and the effect of substrate roughness: a comparative study using scanning tunneling microscopy, cyclic voltammetry, second-harmonic generation, and sum-frequency generation Journal of Physical Chemistry C,Washington, DC : American Chemical Society - ACS,v. 118, n. 35, p. 20374-20382 ABSTRACT: Self-assembled monolayers (SAMs) of alkylthiols on gold have called considerable attention due to several applications in the modification and control of surface properties, such as wettability, tribology, and biocompatibility. Therefore, understanding the adsorption and molecular structure of these SAMs is crucial to optimize their quality for a given application. Although many studies in this area have been performed, the effects of substrate morphology on the quality of long chain alkylthiols on gold have not been satisfactorily clarified. This study focuses on the adsorption and conformation of SAMs of 1-hexadecanethiol (C16SH) as a function of adsorption time, substrate roughness, and morphology. The adsorption of C16SH on atomically flat Au surfaces was analyzed via cyclic voltammetry (CV), scanning tunneling microscopy (STM), and second-harmonic generation (SHG), while the molecular conformation and orientation were characterized via sum-frequency generation (SFG) vibrational spectroscopy. We show that CV and STM are much more sensitive to defects in the monolayer than SFG spectroscopy, while SHG is useful to monitor the final stages of adsorption (defect healing). However, SFG spectroscopy suggests that the disordered regions observed in STM are not due to flat-lying molecules but to conformationally disordered upright alkylthiols. Finally, the formation of a nearly perfect monolayer is only obtained at long adsorption times for very flat substrates, with the packing and organization of the alkyl chains depending strongly on the roughness of the gold surface. These findings may have important implications to the preparation of high-quality SAMs for sensitive applications and also highlight the advantages and drawbacks of each technique for assessing the quality of SAMs.
The understanding of the interactions between small molecules and magnetic nanoparticles is of great importance for many areas of bioapplications. Although a large array of studies in this area have been performed, aspects involving the interaction of magnetic nanoparticles with phospholipids monolayers, which can better mimic biological membranes, have not yet been clarified. This study was aimed at investigating the interactions between Langmuir films of dipalmitoyl phosphatidylglycerol and dipalmitoyl phosphatidylcholine, obtained on an aqueous subphase, and magnetic nanoparticles. Sum-frequency generation (SFG) vibrational spectroscopy was used to verify the orientation and molecular conformation and to better understand the interactions between phospholipids and the magnetic nanoparticles. Surface pressure-area isotherms and SFG spectroscopy made it possible to investigate the interaction of these nanomaterials with components of phospholipids membranes at the water surface.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.