Sphingosine-1-phosphate (S1P), a potent signalling lipid secreted by red blood cells and platelets, plays numerous biologically significant roles. However, the identity of its long-sought exporter is enigmatic. Here we show that the major facilitator superfamily transporter 2b (Mfsd2b), an orphan transporter, is essential for S1P export from red blood cells and platelets. Comprehensive lipidomic analysis indicates a dramatic and specific accumulation of S1P species in Mfsd2b knockout red blood cells and platelets compared with that of wild-type controls. Consistently, biochemical assays from knockout red blood cells, platelets, and cell lines overexpressing human and mouse Mfsd2b proteins demonstrate that Mfsd2b actively exports S1P. Plasma S1P level in knockout mice is significantly reduced by 42-54% of that of wild-type level, indicating that Mfsd2b pathway contributes approximately half of the plasma S1P pool. The reduction of plasma S1P in knockout mice is insufficient to cause blood vessel leakiness, but it does render the mice more sensitive to anaphylactic shock. Stress-induced erythropoiesis significantly increased plasma S1P levels and knockout mice were sensitive to these treatments. Surprisingly, knockout mice exhibited haemolysis associated with red blood cell stomatocytes, and the haemolytic phenotype was severely increased with signs of membrane fragility under stress erythropoiesis. We show that S1P secretion by Mfsd2b is critical for red blood cell morphology. Our data reveal an unexpected physiological role of red blood cells in sphingolipid metabolism in circulation. These findings open new avenues for investigating the signalling roles of S1P derived from red blood cells and platelets.
SUMMARYIn mammals and plants, parental genomic imprinting restricts the expression of specific loci to one parental allele. Imprinting in mammals relies on sex-dependent de novo deposition of DNA methylation during gametogenesis but a comparable mechanism was not shown in plants. Rather, paternal silencing by the maintenance DNA methyltransferase 1 (MET1) and maternal activation by the DNA demethylase DEMETER (DME) cause maternal expression. However, genome-wide studies suggested other DNA methylationdependent imprinting mechanisms. Here, we show that de novo RNA-directed DNA methylation (RdDM) regulates imprinting at specific loci expressed in endosperm. RdDM in somatic tissues is required to silence expression of the paternal allele. By contrast, the repression of RdDM in female gametes participates with or without DME requirement in the activation of the maternal allele. The contrasted activity of DNA methylation between male and female gametes appears sufficient to prime imprinted maternal expression. After fertilization, MET1 maintains differential expression between the parental alleles. RdDM depends on small interfering RNAs (siRNAs). The involvement of RdDM in imprinting supports the idea that sources of siRNAs such as transposons and de novo DNA methylation were recruited in a convergent manner in plants and mammals in the evolutionary process leading to selection of imprinted loci.
Cytosine methylation is a key epigenetic mark in many organisms, important for both transcriptional control and genome integrity. While relatively stable during somatic growth, DNA methylation is reprogrammed genome-wide during mammalian reproduction. Reprogramming is essential for zygotic totipotency and to prevent transgenerational inheritance of epimutations. However, the extent of DNA methylation reprogramming in plants remains unclear. Here, we developed sensors reporting with single-cell resolution CG and non-CG methylation in Arabidopsis. Live imaging during reproduction revealed distinct and sex-specific dynamics for both contexts. We found that CHH methylation in the egg cell depends on DOMAINS REARRANGED METHYLASE 2 (DRM2) and RNA polymerase V (Pol V), two main actors of RNA-directed DNA methylation, but does not depend on Pol IV. Our sensors provide insight into global DNA methylation dynamics at the single-cell level with high temporal resolution and offer a powerful tool to track CG and non-CG methylation both during development and in response to environmental cues in all organisms with methylated DNA, as we illustrate in mouse embryonic stem cells.
Sphingosine-1-phosphate (S1P) is a potent lipid mediator that exerts its activity via activation of five different G protein–coupled receptors, designated as S1P1–5. This potent lipid mediator is synthesized from the sphingosine precursor by two sphingosine kinases (SphK1 and 2) and must be exported to exert extracellular signaling functions. We recently identified Mfsd2b as the S1P transporter in the hematopoietic system. However, the sources of sphingosine for S1P synthesis and the transport mechanism of Mfsd2b in erythrocytes remain to be determined. Here, we show that erythrocytes efficiently take up exogenous sphingosine and that a de novo synthesis pathway in part provides sphingosines to erythrocytes. The uptake of sphingosine in erythrocytes is facilitated by the activity of SphK1. By converting sphingosine into S1P, SphK1 indirectly increases the influx of sphingosine, a process that is irreversible in erythrocytes. Our results explain for the abnormally high amount of sphingosine accumulation in Mfsd2b knockout erythrocytes. Furthermore, we show that Mfsd2b utilizes a proton gradient to facilitate the release of S1P. The negatively charged residues D95 and T157 are essential for Mfsd2b transport activity. Of interest, we also discovered an S1P analog that inhibits S1P export from erythrocytes, providing evidence that sphingosine analogs can be used to inhibit S1P export by Mfsd2b. Collectively, our results highlight that erythrocytes are efficient in sphingosine uptake for S1P production and the release of S1P is dependent on Mfsd2b functions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.