X inactivation is associated with chromosome‐wide establishment of inactive chromatin. Although this is classically regarded as facultative heterochromatin that is uniform in nature, the exact distribution of associated epigenetic marks is not well defined. Here we have analysed histone modifications in human somatic cells within two selected regions of the X chromosome. Intergenic, coding and promoter regions are segregated into differentially marked chromatin. H3K27me3 is most prominent in intergenic and silenced coding regions, but is associated with some active coding regions as well. Histone H3/H4 acetylation and H3K4me3 are locally enriched at promoter regions but do not necessarily mark continuing transcription. Remarkably, H3K9me3 is predominant in coding regions of active genes, a phenomenon that is not restricted to the X chromosome. These results argue against the exclusiveness of individual marks to heterochromatin or euchromatin, but rather suggest that composite patterns of interdependent or mutually exclusive modifications together signal the gene expression status.
BackgroundThe TLR9 agonist CpG is increasingly applied in preclinical and clinical studies as a therapeutic modality to enhance tumor immunity. The clinical application of CpG appears, however, less successful than would be predicted from animal studies. One reason might be the different administration routes applied in most mouse studies and clinical trials. We studied whether the efficacy of CpG as an adjuvant in cancer immunotherapy is dependent on the route of CpG administration, in particular when the tumor is destructed in situ.Methodology/Principal FindingsIn situ tumor destruction techniques are minimally invasive therapeutic alternatives for the treatment of (nonresectable) solid tumors. In contrast to surgical resection, tumor destruction leads to the induction of weak but tumor-specific immunity that can be enhanced by coapplication of CpG. As in situ tumor destruction by cryosurgery creates an instant local release of antigens, we applied this model to study the efficacy of CpG to enhance antitumor immunity when administrated via different routes: peritumoral, intravenous, and subcutaneous but distant from the tumor. We show that peritumoral administration is superior in the activation of dendritic cells, induction of tumor-specific CTL, and long-lasting tumor protection. Although the intravenous and subcutaneous (at distant site) exposures are commonly used in clinical trials, they only provided partial protection or even failed to enhance antitumor responses as induced by cryosurgery alone.Conclusions/SignificanceCpG administration greatly enhances the efficacy of in situ tumor destruction techniques, provided that CpG is administered in close proximity of the released antigens. Hence, this study helps to provide directions to fully benefit from CpG as immune stimulant in a clinical setting.
This study provides a first indication of EIC as possible precursor lesion for SOC. This finding could have major clinical implications for future ovarian cancer management and underscores EIC as a possible target for early SOC detection and prevention.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.