Objective: The effects of vitamin D in the elderly are inconsistent. The aim of this study was to evaluate the association between vitamin D status and the metabolic syndrome (MetS) in the elderly, as well as between vitamin D status and the components of MetS (i.e. serum glucose, triglycerides (TG), HDL cholesterol (HDL-C), waist circumference (WC), and blood pressure (BP)). Methods: The study was embedded in the Rotterdam Study, a population-based cohort of middle-aged and elderly adults. We analyzed data from 3240 people (median age 71.2 years) who did not have type 2 diabetes mellitus at baseline.
BackgroundTo evaluate the clinical value of metabolic syndrome based on different definitions [American Heart Association/National Heart, Lung and Blood Institute (AHA/NHLBI), International Diabetes Federation (IDF) and European Group for the Study of Insulin Resistance (EGIR)] in middle-aged and elderly populations.MethodsWe studied 8643 participants from the Rotterdam study (1990–2012; mean age 62.7; 57.6 % female), a large prospective population-based study with predominantly elderly participants. We performed cox-proportional hazards models for different definitions, triads within definitions and each separate component for the risk of incident type 2 diabetes mellitus, coronary heart disease, stroke, cardiovascular- and all-cause mortality.ResultsIn our population of 8643 subjects, metabolic syndrome was highly prevalent (prevalence between 19.4 and 42.4 %). Metabolic syndrome in general was associated with incident type 2 diabetes mellitus (median follow-up of 6.8 years, hazard ratios 3.13–3.78). The associations with coronary heart disease (median follow-up of 7.2 years, hazard ratios 1.08–1.32), stroke (median follow-up of 7.7 years, hazard ratios 0.98–1.32), cardiovascular mortality (median follow-up of 8.2 years, ratios 0.95–1.29) and all-cause mortality (median follow-up of 8.7 years, hazard ratios 1.05–1.10) were weaker. AHA/NHLBI- and IDF-definitions showed similar associations with clinical endpoints compared to the EGIR, which was only significantly associated with incident type 2 diabetes mellitus. All significant associations disappeared after correcting metabolic syndrome for its individual components.ConclusionsLarge variability exists between and within definitions of the metabolic syndrome with respect to risk of clinical events and mortality. In a relatively old population the metabolic syndrome did not show an additional predictive value on top of its individual components. So, besides as a manner of easy identification of high risk patients, the metabolic syndrome does not seem to add any predictive value for clinical practice.Electronic supplementary materialThe online version of this article (doi:10.1186/s12933-016-0387-4) contains supplementary material, which is available to authorized users.
BackgroundType 2 diabetes is a major healthcare problem. Glucose-, lipid-, and blood pressure-lowering strategies decrease the risk of micro- and macrovascular complications. However, a substantial residual risk remains. To unravel the etiology of type 2 diabetes and its complications, large-scale, well-phenotyped studies with prospective follow-up are needed. This is the goal of the DiaGene study. In this manuscript, we describe the design and baseline characteristics of the study.MethodsThe DiaGene study is a multi-centre, prospective, extensively phenotyped type 2 diabetes cohort study with concurrent inclusion of diabetes-free individuals at baseline as controls in the city of Eindhoven, The Netherlands. We collected anthropometry, laboratory measurements, DNA material, and detailed information on medication usage, family history, lifestyle and past medical history. Furthermore, we assessed the prevalence and incidence of retinopathy, nephropathy, neuropathy, and diabetic feet in cases. Using logistic regression models, we analyzed the association of 11 well known genetic risk variants with type 2 diabetes in our study.ResultsIn total, 1886 patients with type 2 diabetes and 854 controls were included. Cases had worse anthropometric and metabolic profiles than controls. Patients in outpatient clinics had higher prevalence of macrovascular (41.9% vs. 34.8%; P = 0.002) and microvascular disease (63.8% vs. 20.7%) compared to patients from primary care. With the exception of the genetic variant in KCNJ11, all type 2 diabetes susceptibility variants had higher allele frequencies in subjects with type 2 diabetes than in controls.ConclusionsIn our study population, considerable rates of macrovascular and microvascular complications are present despite treatment. These prevalence rates are comparable to other type 2 diabetes populations. While planning genomics, we describe that 11 well-known type 2 diabetes genetic risk variants (in TCF7L2, PPARG-P12A, KCNJ11, FTO, IGF2BP2, DUSP9, CENTD2, THADA, HHEX, CDKAL1, KCNQ1) showed similar associations compared to literature. This study is well-suited for multiple omics analyses to further elucidate disease pathophysiology. Our overall goal is to increase the understanding of the underlying mechanisms of type 2 diabetes and its complications for developing new prediction, prevention, and treatment strategies.Electronic supplementary materialThe online version of this article (doi:10.1186/s13098-017-0245-x) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.