We study, numerically and analytically, the forced transport of deformable
containers through a narrow constriction. Our central aim is to quantify the
competition between the constriction geometry and the active forcing,
regulating whether and at which speed a container may pass through the
constriction and under what conditions it gets stuck. We focus, in particular,
on the interrelation between the force that propels the container and the
radius of the channel, as these are the external variables that may be directly
controlled in both artificial and physiological settings. We present
Lattice-Boltzmann simulations that elucidate in detail the various phases of
translocation, and present simplified analytical models that treat two limiting
types of these membrane containers: deformational energy dominated by the
bending or stretching contribution. In either case we find excellent agreement
with the full simulations, and our results reveal that not only the radius but
also the length of the constriction determines whether or not the container
will pass.Comment: 9 pages, 4 figure
Stock and options markets can disagree about a stock’s value because of informed trading in options and/or price pressure in the stock. The predictability of stock returns based on this cross-market discrepancy in values is especially strong when accompanied by stock price pressure, and it does not depend on trading in options. We argue that option-implied prices provide an anchor for fundamental stock values that helps to distinguish stock price movements resulting from pressure versus news. Overall, our results are consistent with stock price pressure being the primary driver of the option price-based stock return predictability. This paper was accepted by Tyler Shumway, finance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.