The G protein-coupled receptor TGR5 has been identified as an important component of the bile acid signaling network, and its activation has been linked to enhanced energy expenditure and improved glycemic control. Here, we demonstrate that activation of TGR5 in macrophages by 6α-ethyl-23(S)-methylcholic acid (6-EMCA, INT-777), a semisynthetic BA, inhibits proinflammatory cytokine production, an effect mediated by TGR5-induced cAMP signaling and subsequent NF-κB inhibition. TGR5 activation attenuated atherosclerosis in Ldlr(-/-)Tgr5(+/+) mice but not in Ldlr(-/-)Tgr5(-/-) double-knockout mice. The inhibition of lesion formation was associated with decreased intraplaque inflammation and less plaque macrophage content. Furthermore, Ldlr(-/-) animals transplanted with Tgr5(-/-) bone marrow did not show an inhibition of atherosclerosis by INT-777, further establishing an important role of leukocytes in INT-777-mediated inhibition of vascular lesion formation. Taken together, these data attribute a significant immune modulating function to TGR5 activation in the prevention of atherosclerosis, an important facet of the metabolic syndrome.
Summary Bile acids (BAs) are amphipatic molecules that facilitate the uptake of lipids, and their levels fluctuate in the intestine as well as in the blood circulation depending on food intake. Besides their role in dietary lipid absorption, bile acids function as signaling molecules capable to activate specific receptors. These BA receptors are not only important in the regulation of bile acid synthesis and their metabolism, but also regulate glucose homeostasis, lipid metabolism and energy expenditure. These processes are important in diabetes and other facets of the metabolic syndrome, which represents a considerable increasing health burden. In addition to the function of the nuclear receptor FXRα in regulating local effects in the organs of the enterohepatic axis, increasing evidence points to a crucial role of the G-protein coupled receptor (GPCR) TGR5 in mediating systemic actions of BAs. Here we discuss the current knowledge on BA receptors, with a strong focus on the cell membrane receptor TGR5, which emerges as a valuable target for intervention in metabolic diseases.
Objective-Atherosclerosis is an inflammatory disease in which macrophage activation and lipid loading play a crucial role. In this study, we investigated expression and function of the NR4A nuclear receptor family, comprising Nur77 (NR4A1, TR3), Nurr1 (NR4A2), and NOR-1 (NR4A3) in human macrophages. Methods and Results-Nur77, Nurr1, and NOR-1 are expressed in early and advanced human atherosclerotic lesion macrophages primarily in areas of plaque activation/progression as detected by in situ-hybridization and immunohistochemistry. Protein expression localizes to the nucleus. Primary and THP-1 macrophages transiently express NR4A-factors in response to lipopolysaccharide and tumor necrosis factor ␣. Lentiviral overexpression of Nur77, Nurr1, or NOR-1 reduces expression and production of interleukin (IL)-1 and IL-6 proinflammatory cytokines and IL-8, macrophage inflammatory protein-1␣ and -1 and monocyte chemoattractant protein-1 chemokines. In addition, NR4A-factors reduce oxidized-low-density lipoprotein uptake, consistent with downregulation of scavenger receptor-A, CD36, and CD11b macrophage marker genes. Knockdown of Nur77 or NOR-1 with gene-specific lentiviral short-hairpin RNAs resulted in enhanced cytokine and chemokine synthesis, increased lipid loading, and augmented CD11b expression, demonstrating endogenous NR4A-factors to inhibit macrophage activation, foam-cell formation, and differentiation. A therosclerosis is a chronic inflammatory disease involving deregulation of both the immune system and lipid metabolism. 1,2 Macrophages, imperative in the innate immune system, are involved in the initiation, progression, and rupture of atherosclerotic lesions as well as in the initiation of smooth muscle cell (SMC)-rich pathologies like restenosis. 3,4 At the onset of atherosclerosis, monocytes are locally recruited to the arterial vessel wall, where these cells differentiate into macrophages. These intimal macrophages ingest modified lipid particles and become lipid-laden foam cells that form a so-called fatty streak. In advanced atherosclerotic lesions, macrophages are localized primarily around a central lipid core and at the shoulder region of the plaque. At the latter site, which is known to be prone to rupture, these cells may be involved in destabilization of the lesion. 5 Throughout the progression of atherosclerosis, macrophages produce proinflammatory cytokines, chemokines, growth factors, and matrix-degrading enzymes and are consequently crucial in the chronic inflammatory process in the diseased vessel wall. 6,7 Detailed knowledge on the molecular mechanisms involved in the inflammatory and metabolic processes in macrophages is essential to develop novel drug therapies against atherosclerosis. We hypothesized that NR4A nuclear receptors are key regulatory factors involved in modulation of these specific processes in macrophages. Conclusion-NR4A-factorsThe NR4A nuclear hormone receptors were first described as early response transcription factors expressed on stimulation by growth factors. 8 -...
Anionic exchange resins are bona fide cholesterol-lowering agents with glycemia lowering actions in diabetic patients. Potentiation of intestinal GLP-1 secretion has been proposed to contribute to the glycemia lowering effect of these non-systemic drugs. Here, we show that resin exposure enhances GLP-1 secretion and improves glycemic control in diet-induced animal models of “diabesity”, effects which are critically dependent on TGR5, a G protein-coupled receptor that is activated by bile acids. We identified the colon as a major source of GLP-1 secretion after resin treatment. Furthermore, we demonstrate that the boost in GLP-1 release by resins is due to both enhanced TGR5-dependent production of the precursor transcript of GLP-1 as well as to the local enrichment of TGR5 agonists in the colon. Thus, TGR5 represents an essential component in the pathway mediating the enhanced GLP-1 release in response to anionic exchange resins.
Bile acids (BAs) are amphipathic molecules that facilitate the uptake of lipids, and their levels fluctuate in the intestines as well as in the circulation depending on food intake. Besides their role in dietary lipid absorption, BAs function as signaling molecules that activate specific BA receptors and trigger downstream signaling cascades. The BA receptors and the signaling pathways they control are not only important in the regulation of BA synthesis and their metabolism, but they also regulate glucose homeostasis, lipid metabolism and energy expenditure – processes relevant in the context of the metabolic syndrome. In addition to the function of the nuclear receptor FXRα in regulating local effects of BAs in the organs of the enterohepatic axis, increasing evidence points to a crucial role of the G-protein-coupled receptor TGR5 in mediating systemic actions of BAs. Here we review the current knowledge on BA receptors, with a strong focus on the cell membrane receptor TGR5, which has emerged as a promising target for intervention in metabolic diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.