Patients with advanced head and neck squamous cell carcinomas (HNSCCs) are often treated with concomitant chemotherapy and radiotherapy, but only 50% is cured. A possible explanation for treatment failure is therapy resistance of the cancer stem cells (CSCs). The application of compounds specifically targeting these CSCs, in addition to routinely used therapeutics, would likely improve clinical outcome. We demonstrate that the previously described monoclonal antibody K984 recognizes the CD98 cell surface protein, which is specifically expressed by cells forming the squamous basal cell layer, the region where the squamous stem cells reside. Moreover, CD98 is highly resistant to the proteolytic enzymes required for CSC enrichment procedures. We show that CD98(high) cells, in contrast to CD98(low) cells, are able to generate tumors in immunodeficient mice, indicating that CD98(high) cells have stem cell characteristics. Furthermore, the CD98(high) subpopulation expresses high levels of cell cycle control and DNA repair genes, while the CD98(low) fraction shows expression patterns that represent the more differentiated cells forming the bulk of the tumor. CD98 is a promising CSC enrichment marker in HNSCC. Our data support the CSC concept in head and neck cancer and the potential relevance of these cells for treatment outcome.
Fanconi anemia is a recessively inherited disease that is characterized by congenital abnormalities, bone marrow failure, and a predisposition to develop cancer, particularly squamous cell carcinomas (SCCs) in the head and neck and anogenital regions. Previous studies of Fanconi anemia SCCs, mainly from US patients, revealed the presence of high-risk human papillomavirus (HPV) DNA in 21 (84%) of 25 tumors analyzed. We examined a panel of 21 SCCs mainly from European Fanconi anemia patients (n = 19 FA patients; 16 head and neck squamous cell carcinomas [HNSCCs], 2 esophageal SCCs, and 3 anogenital SCCs) for their clinical and molecular characteristics, including patterns of allelic loss, TP53 mutations, and the presence of HPV DNA by GP5+/6+ polymerase chain reaction. HPV DNA was detected in only two (10%) of 21 tumors (both anogenital SCCs) but in none of the 16 HNSCCs. Of the 18 tumors analyzed, 10 contained a TP53 mutation. The patterns of allelic loss were comparable to those generally found in sporadic SCCs. Our data show that HPV does not play a major role in squamous cell carcinogenesis in this cohort of Fanconi anemia patients and that the Fanconi anemia SCCs are genetically similar to sporadic SCCs despite having a different etiology.
Osteosarcoma is the most common primary malignancy of bone. The tumours are characterized by high genomic instability, including the occurrence of multiple regions of amplifications and deletions. Chromosome region 17p11.2–p12 is amplified in about 25% of cases. In previous studies, COPS3 and PMP22 have been identified as candidate oncogenes in this region. Considering the complexity and variation of the amplification profiles for this segment, the involvement of additional causative oncogenes is to be expected. The aim of the present investigation is to identify novel candidate oncogenes in 17p11.2–p12. We selected 26 of in total 85 osteosarcoma samples (31%) with amplification events in 17p11.2–p12, using quantitative PCR for 8 marker genes. These were subjected to high-resolution SNP array analysis and subsequent GISTIC analysis to identify the most significantly amplified regions. Two major amplification peaks were found in the 17p11.2–p12 region. Overexpression as a consequence of gene amplification is a major mechanism for oncogene activation in tumours. Therefore, to identify the causative oncogenes, we next determined expression levels of all genes within the two segments using expression array data that could be generated for 20 of the selected samples. We identified 11 genes that were overexpressed through amplification in at least 50% of cases. Nine of these, c17orf39, RICH2, c17orf45, TOP3A, COPS3, SHMT1, PRPSAP2, PMP22, and RASD1, demonstrated a significant association between copy number and expression level. We conclude that these genes, including COPS3 and PMP22, are candidate oncogenes in 17p11.2–p12 of importance in osteosarcoma tumourigenesis.
LOH at chromosome arms 3p, 9p, 11q, and 17p are wellestablished oncogenetic aberrations in oral precancerous lesions and promising biomarkers to monitor the development of oral cancer. Noninvasive LOH screening of brushed oral cells is a preferable method for precancer detection in patients at increased risk for head and neck squamous cell carcinoma (HNSCC), such as patients with Fanconi anemia. We determined the prevalence of LOH in brushed samples of the oral epithelium of 141 patients with Fanconi anemia and 144 aged subjects, and studied the association between LOH and HNSCC. LOH was present in 14 (9.9%) nontransplanted patients with Fanconi anemia, whereas LOH was not detected in a low-risk group (n ¼ 50, >58 years, nonsmoking/nonalcohol history) and a group with somewhat increased HNSCC risk (n ¼ 94, >58 years, heavy smoking/excessive alcohol use); Fisher exact test, P ¼ 0.023 and P ¼ 0.001, respectively. Most frequent genetic alteration was LOH at 9p. Age was a signif-
Osteosarcomas are primary tumors of bone that most often develop in adolescents. They are characterized by complex genomic changes including amplifications, deletions, and translocations. The chromosome region 17p11.2p12 is frequently amplified in human high grade osteosarcomas (25% of cases), suggesting the presence of one or more oncogenes. In previous studies, we identified 9 candidate oncogenes in this region (GID4, ARGHAP44, LRRC75A-AS1, TOP3A, COPS3, SHMT1, PRPSAP2, PMP22, and RASD1). The aim of the present study was to determine their oncogenic properties. Therefore, we generated osteosarcoma cell lines overexpressing these genes, except for LRRC75A-AS1 and PRPSAP2, and subjected these to functional oncogenic assays. We found that TOP3A, SHMT1, and RASD1 overexpression provided increased proliferation and that ARGHAP44, COPS3, and PMP22 overexpression had a stimulatory effect on migration and invasion of the cells. COPS3 and PMP22 overexpression additionally improved the ability of the cells to form new colonies. No oncogenic effect could be demonstrated for GID4 overexpression. We conclude that the concerted amplification-mediated overexpression of these genes in 17p11.2p12 may contribute to the oncogenic process in malignant osteosarcoma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.