Fibers irregular and seed-like microcrystalline ZnO were synthesized by using a cost-effective and low temperature aqueous sol-gel method. Various polymers, namely, polyethylene glycol 6000 (PEG 6000) and polyvinyl pyrrolidone (PVP), were used as structure directing agents. The samples were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). The X-ray diffraction pattern revealed the formation of phase-pure ZnO micropowders. It is observed that the polymers play an important role in modifying the surface morphology and the size of the crystallites. A compact granular morphology is observed for the ZnO samples without polymer. The samples exhibit microparticles of size 100 nm for PVP and for PEG-mediated growth, whereas microporous corrugated morphology is observed for added PEG-mediated micropowder. FTIR study is used to confirm the structural modifications occurring in the polymers.
Objective: Now a day's cost effective and environmentally friendly technologies for nano material synthesis have gaining attention in biosynthesis of nanoparticles. have been used traditionally in Tamilnadu for Cassia auriculata various ailments. The present study contains by using silver nanoparticles are biosynthesized from Cassia auriculata aqueous silver nitrate solution. In 1mM silver nitrate solution plant flower extract is added Material and Methods: after 12hrs the color change from dull yellow to blackish brown confirms the formation of nanoparticles. It is further confirmed and characterized through UV-VIS, FTIR, SEM, EDAX and XRD instruments. Results and conclusion: A peak at 452 nmconfirms the formation of nanoparticles, FTIR peaks confirm the capping of plant biomoleculs on silver nanoparticles, EDAX result confirmed reduction of silver nitrate to silver ions, SEM exhibits morphology and size of nanoparticles, XRD reveals the formation cubic structure. The nanoparticles proved to be it posses antibacterial and antifungal properties. In this study antibacterial and antifungal potentials are compared with standard chloramphenicol and nystatin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.