Children's posture has been of growing concern due to observations that it seems to be impaired compared to previous generations. So far there is no reference data for spinal posture and pelvic position in healthy children available. Purpose of this pilot study was to determine rasterstereographic posture values in children during their second growth phase. Three hundred and forty-five pupils were measured with a rasterstereographic device in a neutral standing position with hanging arms. To further analyse for changes in spinal posture during growth, the children were divided into 12-month age clusters. A mean kyphotic angle of 47.1°±7.5 and a mean lordotic angle of 42.1°±9.9 were measured. Trunk imbalance in girls (5.85 mm±0.74) and boys (7.48 mm± 0.83) varied only little between the age groups, with boys showing slightly higher values than girls. The trunk inclination did not show any significant differences between the age groups in boys or girls. Girls' inclination was 2.53°±1.96 with a tendency to decreasing angles by age, therefore slightly smaller compared to boys (2.98°±2.18). Lateral deviation (4.8 mm) and pelvic position (tilt: 2.75 mm; torsion: 1.53°; inclination: 19.8°±19.8) were comparable for all age groups and genders. This study provides the first systematic rasterstereographic analysis of spinal posture in children between 6 and 11 years. With the method of rasterstereography a reliable three-dimensional analysis of spinal posture and pelvic position is possible. Spinal posture and pelvic position does not change significantly with increasing age in this collective of children during the second growth phase.
The purpose of this study was to examine the spinal posture in young athletes depending on training intensity. The spinal curvature of 245 children, age 8 to 12 years, was evaluated using rasterstereography. According to their weekly training time group 1 (mean age: 9.54 ± 1.18) did 2-6, group 2 (mean age: 9.49 ± 0.87) did 6-15 and group 3 (mean age: 9.68 ± 0.87) did over 15 hours of training. Group 1 had a significantly higher weight (p = 0.028) (33.86 ± 7. kg) than those of the more active groups (30.67 ± 6.49 kg and 29.46 ± 4.33 kg). The mean kyphotic angle decreased significantly (p < 0.001) with the amount of training per week from 46.86 ± 8.2° in group 1 to 40.08 ± 8° in group 3. We also found a significant decrease (p = 0.047) in lateral deviation with training from group 1 with 5.3 ± 3 mm to group 2 with 4.1 ± 1.6 mm. The results of our study suggest that higher training time can be associated with lower weight and decreases in thoracic kyphosis and lateral deviation of the spine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.