Bile salts are potent antimicrobial agents and are an important component of innate defenses in the intestine, giving protection against invasive organisms. They play an important role in determining microbial ecology of the intestine and alterations in their levels can lead to increased colonization by pathogens. We have previously demonstrated survival of the opportunistic pathogen Staphylococcus aureus in the human colonic model. Thus investigating the interaction between S. aureus and bile salts is an important factor in understanding its ability to colonize in the host intestine. Harnessing bile salts may also give a new avenue to explore in the development of therapeutic strategies to control drug resistant bacteria. Despite this importance, the antibacterial activity of bile salts on S. aureus is poorly understood. In this study, we investigated the antibacterial effects of the major unconjugated and conjugated bile salts on S. aureus. Several concentration-dependent antibacterial mechanisms were found. Unconjugated bile salts at their minimum inhibitory concentration (cholic and deoxycholic acid at 20 and 1 mM, respectively) killed S. aureus, and this was associated with increased membrane disruption and leakage of cellular contents. Unconjugated bile salts (cholic and deoxycholic acid at 8 and 0.4 mM, respectively) and conjugated bile salts (glycocholic and taurocholic acid at 20 mM) at their sub inhibitory concentrations were still able to inhibit growth through disruption of the proton motive force and increased membrane permeability. We also demonstrated that unconjugated bile salts possess more potent antibacterial action on S. aureus than conjugated bile salts.
An anaerobic three-stage continuous culture model of the human colon (gut model), which represent different anatomical areas of the large intestine, was used to study the effect of S. aureus infection of the gut on the resident faecal microbiota. Studies on the development of the microbiota in the three vessels were performed and bacteria identified by culture independent fluorescence in situ hybridization (FISH). Furtheremore, short chain fatty acids (SCFA), as principal end products of gut bacterial metabolism, were measured along with a quantitative assessment of the predominant microbiota. During steady state conditions, numbers of S. aureus cells stabilised until they were washed out, but populations of indigenous bacteria were transiently altered; thus S. aureus was able to compromise colonisation resistance by the colonic microbiota. Furthermore, the concentration of butyric acid in the vessel representing the proximal colon was significantly decreased by infection. Thus infection by S. aureus appears to be able to alter the overall structure of the human colonic microbiota and the microbial metabolic profiles. This work provides an initial in vitro model to analyse interactions with pathogens.
Background Poultry is the world's most popular animal-based food and global production has tripled in the past 20 years alone. Low-cost vaccines that can be combined to protect poultry against multiple infections are a current global imperative. Glycoconjugate vaccines, which consist of an immunogenic protein covalently coupled to glycan antigens of the targeted pathogen, have a proven track record in human vaccinology, but have yet to be used for livestock due to prohibitively high manufacturing costs. To overcome this, we use Protein Glycan Coupling Technology (PGCT), which enables the production of glycoconjugates in bacterial cells at considerably reduced costs, to generate a candidate glycan-based live vaccine intended to simultaneously protect against Campylobacter jejuni, avian pathogenic Escherichia coli (APEC) and Clostridium perfringens. Campylobacter is the most common cause of food poisoning, whereas colibacillosis and necrotic enteritis are widespread and devastating infectious diseases in poultry. Results We demonstrate the functional transfer of C. jejuni protein glycosylation (pgl) locus into the genome of APEC χ7122 serotype O78:H9. The integration caused mild attenuation of the χ7122 strain following oral inoculation of chickens without impairing its ability to colonise the respiratory tract. We exploit the χ7122 pgl integrant as bacterial vectors delivering a glycoprotein decorated with the C. jejuni heptasaccharide glycan antigen. To this end we engineered χ7122 pgl to express glycosylated NetB toxoid from C. perfringens and tested its ability to reduce caecal colonisation of chickens by C. jejuni and protect against intra-air sac challenge with the homologous APEC strain. Conclusions We generated a candidate glycan-based multivalent live vaccine with the potential to induce protection against key avian and zoonotic pathogens (C. jejuni, APEC, C. perfringens). The live vaccine failed to significantly reduce Campylobacter colonisation under the conditions tested but was protective against homologous APEC challenge. Nevertheless, we present a strategy towards the production of low-cost “live-attenuated multivalent vaccine factories” with the ability to express glycoconjugates in poultry.
bResistance to the innate defenses of the intestine is crucial for the survival and carriage of Staphylococcus aureus, a common colonizer of the human gut. Bile salts produced by the liver and secreted into the intestines are one such group of molecules with potent antimicrobial activity. The mechanisms by which S. aureus is able to resist such defenses in order to colonize and survive in the human gut are unknown. Here we show that mnhF confers resistance to bile salts, which can be abrogated by efflux pump inhibitors. MnhF mediates the efflux of radiolabeled cholic acid both in S. aureus and when heterologously expressed in Escherichia coli, rendering them resistant. Deletion of mnhF attenuated the survival of S. aureus in an anaerobic three-stage continuous-culture model of the human colon (gut model), which represents different anatomical areas of the large intestine. Staphylococcus aureus is a ubiquitous and highly adaptable human pathogen responsible for a significant global burden of morbidity and mortality. The bacterium lives as a commensal in the nares of 20 to 25% of the population at any one time (1, 2). While nasal colonization is a well-established risk factor for most types of S. aureus infections, several recent studies have suggested that colonization of the intestine, which occurs in ca. 20% of individuals and which by and large has been overlooked, could have important clinical implications (3). Patients with S. aureus intestinal colonization can serve as an important source of transmission, as they often contaminate the adjacent environment (4). Similarly, such patients display an increased frequency of skin colonization (5). A study of intensive care and liver transplant units showed that patients with both rectal and naris colonization by methicillin-resistant S. aureus (MRSA) had a significantly higher risk of disease (40%) than did patients with nasal colonization alone (18%) (6). Furthermore, a study of hospitalized patients in the United States reported cocolonization by S. aureus and vancomycin-resistant enterococci in Ͼ50% of the individuals studied (7). Thus, it is likely that intestinal colonization by S. aureus provides the pathogen a potential opportunity to acquire new antibiotic resistance genes.While the clinical implications of intestinal colonization by S. aureus are still relatively ill defined, it is assumed that carriage is a risk for intestinal infection; S. aureus can induce pseudomembranous colitis that is histologically distinct from that caused by Clostridium difficile (8). Multiple studies have demonstrated frequent intestinal colonization in infants, particularly those who were breast fed, and that there is a positive correlation with the development of allergies (9-13). While a role for S. aureus intestinal carriage in the development of systemic S. aureus disease has not been established, colonization of the intestinal lumen of mice can lead to the pathogen crossing the intestinal epithelial barrier and subsequently spreading to the mesenteric lymph nodes (14, 15)...
Background Campylobacter is an animal and zoonotic pathogen of global importance, and a pressing need exists for effective vaccines, including those that make use of conserved polysaccharide antigens. To this end, we adapted Protein Glycan Coupling Technology (PGCT) to develop a versatile Escherichia coli strain capable of generating multiple glycoconjugate vaccine candidates against Campylobacter jejuni. Results We generated a glycoengineering E. coli strain containing the conserved C. jejuni heptasaccharide coding region integrated in its chromosome as a model glycan. This methodology confers three advantages: (i) reduction of plasmids and antibiotic markers used for PGCT, (ii) swift generation of many glycan-protein combinations and consequent rapid identification of the most antigenic proteins or peptides, and (iii) increased genetic stability of the polysaccharide coding-region. In this study, by using the model glycan expressing strain, we were able to test proteins from C. jejuni, Pseudomonas aeruginosa (both Gram-negative), and Clostridium perfringens (Gram-positive) as acceptors. Using this pgl integrant E. coli strain, four glycoconjugates were readily generated. Two glycoconjugates, where both protein and glycan are from C. jejuni (double-hit vaccines), and two glycoconjugates, where the glycan antigen is conjugated to a detoxified toxin from a different pathogen (single-hit vaccines). Because the downstream application of Live Attenuated Vaccine Strains (LAVS) against C. jejuni is to be used in poultry, which have a higher body temperature of 42 °C, we investigated the effect of temperature on protein expression and glycosylation in the E. coli pgl integrant strain. Conclusions We determined that glycosylation is temperature dependent and that for the combination of heptasaccharide and carriers used in this study, the level of PglB available for glycosylation is a step limiting factor in the glycosylation reaction. We also demonstrated that temperature affects the ability of PglB to glycosylate its substrates in an in vitro glycosylation assay independent of its transcriptional level.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.