Sequence variants at or near the leucine-rich repeat kinase 2 (LRRK2) locus have been associated with susceptibility to three human conditions: Parkinson disease (PD), Crohn’s disease and leprosy. Because all three disorders represent complex diseases with evidence of inflammation, we hypothesized a role for LRRK2 in immune cell functions. Here, we report that full-length Lrrk2 is a relatively common constituent of human peripheral blood mononuclear cells (PBMC) including affinity-isolated, CD14+ monocytes, CD19+ B-cells, and CD4+ as well as CD8+ T-cells. Up to 25% of PBMC from healthy donors and up to 43% of CD14+ monocytes were stained by anti-Lrrk2 antibodies using cell sorting. PBMC lysates contained full-length (>260 kDa) and higher molecular weight Lrrk2 species. The expression of LRRK2 in circulating leukocytes was confirmed by microscopy of human blood smears and in sections from normal midbrain and distal ileum. Lrrk2 reactivity was also detected in mesenteric lymph nodes and spleen (including in dendritic cells), but was absent in splenic mononuclear cells from lrrk2-null mice, as expected. In cultured bone marrow-derived macrophages (BMDM) from mice we made three observations: (i) a predominance of higher molecular weight lrrk2; (ii) the reduction of autophagy marker LC3-II in R1441Clrrk2-mutant cells (≥31%); and (iii) a significant up-regulation of lrrk2 mRNA (>4-fold) and protein after exposure to microbial structures including bacterial lipopolysaccharide and to lentiviral particles. We conclude that Lrrk2 is a constituent of many cell types in the immune system. Following the recognition of microbial structures, stimulated macrophages respond with increased lrrk2 gene expression. In the same cells, lrrk2 appears to co-regulate autophagy, which is reduced in R1441Clrrk2-mutant mice. A pattern recognition receptor-type function for LRRK2 could explain the locus association with Crohn’s disease and leprosy risk. We speculate that the role of Lrrk2 in immune cells may also be of relevance for the susceptibility to develop PD or its propagation.
While a number of microbial-associated molecular patterns have been known for decades to act as adjuvants, the mechanisms and the signaling pathways underlying their action have remained elusive. Here, we examined the unfolding of the adaptive immune response induced by Nod2 in vivo upon activation by its specific ligand, muramyl dipeptide, a component of peptidoglycan. Our findings demonstrate that this bacterial sensor triggers a potent Ag-specific immune response with a Th2-type polarization profile, characterized by the induction of IL-4 and IL-5 by T cells and IgG1 Ab responses. Nod2 was also found to be critical for the induction of both Th1- and Th2-type responses following costimulation with TLR agonists. Importantly, the synergistic responses to Nod2 and TLR agonists seen in vivo were recapitulated by dendritic cells in vitro, suggesting that these cells likely play a central role in the integration of Nod2- and TLR-dependent signals for driving the adaptive immune response. Taken together, our results identify Nod2 as a critical mediator of microbial-induced potentiation and polarization of Ag-dependent immunity. Moreover, these findings affect our understanding of Crohn’s diseases pathogenesis, where lack of Nod2-dependent Th2 signaling in a subset of these patients might explain heightened Th1-mediated inflammation at the level of the intestinal mucosa.
The pattern recognition molecules Nod1 and Nod2 play important roles in intestinal homeostasis; however, how these proteins impact on the development of inflammation during bacterial colitis has not been examined. In the streptomycin-treated mouse model of Salmonella colitis, we found that mice deficient for both Nod1 and Nod2 had attenuated inflammatory pathology, reduced levels of inflammatory cytokines, and increased colonization of the mucosal tissue. Nod1 and Nod2 from both hematopoietic and nonhematopoietic sources contributed to the pathology, and all phenotypes were recapitulated in mice deficient for the signaling adaptor protein Rip2. However, the influence of Rip2 was strictly dependent on infection conditions that favored expression of the Salmonella pathogenicity island 2 (SPI-2) type III secretion system (TTSS), as Rip2 was dispensable for inflammation when mice were infected with bacteria grown under conditions that promoted expression of the SPI-1 TTSS. Thus, Nod1 and Nod2 can modulate inflammation and mediate efficient clearance of bacteria from the mucosal tissue during Salmonella colitis, but their role is dependent on the expression of the SPI-2 TTSS.
NKT cells are unconventional T cells that respond to self and microbe-derived lipid and glycolipid Ags presented by the CD1d molecule. Invariant NKT (iNKT) cells influence immune responses in numerous diseases. Although only a few studies have examined their role during intestinal inflammation, it appears that iNKT cells protect from Th1-mediated inflammation but exacerbate Th2-mediated inflammation. Studies using iNKT cell-deficient mice and chemically induced dextran sodium sulfate (DSS) colitis have led to inconsistent results. In this study, we show that CD1d-deficient mice, which lack all NKT cells, harbor an altered intestinal microbiota that is associated with exacerbated intestinal inflammation at steady-state and following DSS treatment. This altered microbiota, characterized by increased abundance of the bacterial phyla Proteobacteria, Deferribacteres, and TM7, among which the mucin-eating Mucispirillum, as well as members of the genus Prevotella and segmented filamentous bacteria, was transmissible upon fecal transplant, along with the procolitogenic phenotype. Our results also demonstrate that this proinflammatory microbiota influences iNKT cell function upon activation during DSS colitis. Collectively, alterations of the microbiota have a major influence on colitis outcome and therefore have to be accounted for in such experimental settings and in studies focusing on iNKT cells.
Although a number of studies have examined the development of T-helper cell type 2 (Th2) immunity in different settings, the mechanisms underlying the initiation of this arm of adaptive immunity are not well understood. We exploited the fact that immunization with antigen plus either nucleotide-binding oligomerization domain-containing proteins 1 (Nod1) or 2 (Nod2) agonists drives Th2 induction to understand how these pattern-recognition receptors mediate the development of systemic Th2 immune responses. Here, we show in bone-marrow chimeric mice that Nod1 and Nod2 expression within the stromal compartment is necessary for priming of effector CD4 + Th2 responses and specific IgG1 antibodies. In contrast, sensing of these ligands by dendritic cells was not sufficient to induce Th2 immunity, although these cells contribute to the response. Moreover, we determined that CD11c + cells were the critical antigen-presenting cells, whereas basophils and B cells did not affect the capacity of Nod ligands to induce CD4 + Th2 effector function. Finally, we found that full Th2 induction upon Nod1 and Nod2 activation was dependent on both thymic stromal lymphopoietin production by the stromal cells and the up-regulation of the costimulatory molecule, OX40 ligand, on dendritic cells. This study provides in vivo evidence of how systemic Th2 immunity is induced in the context of Nod stimulation. Such understanding will influence the rational design of therapeutics that could reprogram the immune system during an active Th1–mediated disease, such as Crohn's disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.