The brain uses internal models to estimate future states of the environment based on current inputs and to predict consequences of planned actions. Neural mechanisms that underlie the acquisition and use of these predictive models are poorly understood. Using a novel experimental paradigm, we show clear evidence for predictive processing in the larval zebrafish brain. We find that when presented with repetitive optic flow stimuli, larval zebrafish modulate their optomotor response by quickly acquiring internal representations of the optic flow pattern. Distinct subcircuits in the cerebellum are involved in the predictive representation of stimulus timing and in using them for motor planning. Evidence for such predictive internal representations appears quickly within two trials, lasts over minute timescales even after optic flow is stopped and quickly adapts to changes in the pattern. These results point to an entrainment-based mechanism that allows the cerebellum to rapidly generate predictive neural signals ultimately leading to faster response times.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.