A typical sealing system for rotating shafts consists of the radial shaft sealing ring (RSS), the lubricant and the shaft counter-surface (SCS) of the rotating shaft. The properties of the machined surface of the SCS have an impact on the sealing system. The structural pattern of the SCS influences the lubricant flow along the axial direction. In this paper, a simplified micro scale hydrodynamic simulation model is presented in order to study and determine the axial flow of the lubricant induced by the SCS of the sealing system, isolated from the effects induced by the seal, to allow for a rating of the shaft surface. The influence of the seal was neglected to allow for a simplified simulation. Simulated shaft surfaces corresponding to different machining parameters of machined SCS are used as input. These variants of SCS were created using a kinematic model which simulates an ideal surface machining process of the shaft. A micro scale hydrodynamic simulation model is used to investigate the influence of machining parameters on the lubricant flow along the axial direction across the tribo-contact. From this investigation, the connection between parameters applied for machining of the SCS and conveying effects can be estimated. The simulation model is also validated with experimental results of hard turned shafts of different machining parameters. Differences between manufactured real surfaces and kinematically simulated surfaces are the cause of deviations between the results.
Counter-surfaces for radial shaft seals are usually finished by infeed grinding to avoid macro twist structures on the surface since they can impose a conveying action on the lubricant. This can lead to either leakage or starved lubrication and subsequent thermal damage depending on the direction of said conveying action. Turning processes can offer a more cost-effective surface finish, but conventional methods cause twist structures, which can impair the leakage prevention of the sealing system. An approach for the production of twist-free surfaces was developed based on new kinematics for turning. However, the surfaces produced with this approach using case hardened specimens made from the steel 16MnCr5 show deviating structural characteristics compared to the kinematic simulation. The causes of this and the resulting influence on the conveying value are the subjects of the research work. For this purpose, in addition to hardened steel, two other materials are considered: the steel 16MnCr5 in the unhardened hot rolled delivery condition and brass as a material with good machinability. The results clearly show that there is a deviation in the machining behavior of the steel materials compared to the kinematic surface simulations, especially in the repeatedly turned areas. This is mainly due to elastic–plastic deformation effects. Despite the actually twist-free surface profile, certain characteristics result in an anisotropic structure, which partially has an influence on the conveying value.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.