Automatic audio classification is very useful in audio indexing; content based audio retrieval and online audio distribution. This paper deals with the Speech/Music classification problem, starting from a set of features extracted directly from audio data. Automatic audio classification is very useful in audio indexing; content based audio retrieval and online audio distribution. The accuracy of the classification relies on the strength of the features and classification scheme. In this work Perceptual Linear Prediction (PLP) features are extracted from the input signal. After feature extraction, classification is carried out, using Support Vector Model (SVM) model. The proposed feature extraction and classification models results in better accuracy in speech/music classification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.