Aviation accounts for 2-3% of the carbon dioxide emitted globally. One way to reduce emissions is to develop and introduce sustainable, functional, lightweight materials and coatings that increase the lifetime and fuel efficiency of aircraft. The main lightweight materials used in the aerospace industry today are aluminum alloys and carbon fiber reinforced plastic composites. In the work presented in this licentiate thesis, a new sustainable alternative for the replacement of toxic hexavalent chromium in a low energy and chemical consumption sealing procedure of anodized aluminum alloys is suggested (paper I and II). An alternative to the conventional metal mesh used as lightning strike protection for composite structures used today is also presented. The proposed solution adds considerably less weight and has a possibility to reduce the CO2 emission from aviation (paper III).Aluminum alloys as well as composites both exhibit high strength-to-weight ratios but come with individual drawbacks. Fiber reinforced plastics exhibit limited electrical conductivity, which is why additional protection is needed to avoid severe damage following a lightning strike. Aluminum alloys have instead the disadvantage of being susceptible to corrosion and surface protection is required to prolong the materials lifetime and to avoid devastating failures. Anodization, formation of a porous aluminum oxide coating, is the most common choice of surface treatment. This is often followed by closure of the pores through a sealing procedure. Both processes have up until recently been performed in large, energy consuming tanks with highly toxic solutions containing hexavalent chromium which must be replaced to reduce the environmental impact.Author contribution: Poot was involved in the planning of the project and responsible for anodization, sealing by immersion, SEM and STEM characterizations, and corrosion testing. Poot is the main author of the manuscript.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.