In this paper, we report the analysis of a concentric circular ring plasmonic optical antenna (POA) array using a simple lumped coupled circuit (LCC) model. The currents in the circular rings of the POA array and their mutual couplings are analyzed using the LCC model. The results agree well with the numerical simulation using CST’s Microwave Studio®. The LCC model reveals the mutual couplings between the antenna rings. It is found that the mutual couplings are not only between the adjacent antenna rings, but also involve their second (2nd) nearest or farther neighbors. Since the near-fields of the optical antennas are related to the currents in the optical antennas, the LCC model provides a useful tool for the analysis of the near-field and their mutual interactions in the circular ring POA array.
In this paper, we analyze the plasmonic resonance excited by linearly polarized longwave infrared (LWIR) plane waves in a metallic circular disk optical antenna (MCDA). The surface current distributions are simulated at different wavelengths, incident angles, and polarizations. The excited surface plasmonic resonance waves (SPRs) are different from the Bessel-type of SPR modes and closely resemble those in a monopole antenna. An MCDA coupled LWIR quantum dot infrared photodetector (QDIP) was fabricated and measured at different LWIR plane wave wavelengths and incident angles. A linear correlation between the enhancement ratio and the integrated square of the current is obtained, indicating the monopole antenna effect is a dominating factor for the plasmonic enhancement.
In this paper, we report the study of the frequency-dependent plasmonic enhancement of a circular disk nano-optical antenna array and the photo-response of the optical antenna enhanced photodetector at different frequencies using a femtosecond (fs) laser frequency comb. A fs-laser frequency comb can provide hundreds of evenly spaced harmonic frequencies and thus allows simultaneous measurement of the plasmonic optical antenna enhancement effect at these harmonic frequencies. This offers a highly efficient frequency-dependent measurement approach compared to the conventional method of modulating of a c.w. laser, which measures the frequency response at each frequency. The impulse response of the circular disk nano-optical antenna array and the electric-field (E-field) distribution profile are simulated under a fs laser illumination. The light intensity spectrum is simulated and verified to have uniform intensities on the harmonic frequencies within the ±5 GHz frequency range. The photocurrent densities in different regions of a GaAs p-i-n photodetector are analyzed together with their frequency dependence at the harmonic frequencies of the fs laser frequency comb with a repetition rate of f 0 = 94.2 MHz. A circular disk nano-optical antenna array enhanced GaAs p-i-n photodetector was fabricated and measured using a fs laser frequency comb with the same repetition rate. The nano-optical antenna can provide ~20 dB enhancement for the harmonic frequencies and extend the detector cut-off frequency from 2.4 GHz to 4.2 GHz.
In this paper, we report a back side configured pointed dipole optical antenna array enhanced quantum dot infrared photodetector (QDIP). In this configuration, the light illumination is from the substrate side (i.e. back side illumination), goes through the QDIP and then reaches the optical antenna array. The near-field electric fields (E-fields) are simulated for both top and back side illuminations. The back side configured pointed dipole antenna array gives stronger E-fields than the top side configuration. The physical mechanism for the difference is analyzed. A longwave infrared QDIP with the back side configured pointed dipole optical antenna array was fabricated and tested. The measurements agree well with the simulation. Compared with the top side configured optical antenna array, the back side configured optical antenna array allows easier fabrication of large format (e.g. 640×512 or 1024×1024) focal plane arrays and provides higher plasmonic enhancement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.