Airborne particulate samples were collected in Bangkok, Thailand, using high-volume air samplers from March 2006 to March 2007. The sampling sites were the Huay-Khwang Community Housing (HCH) and the Ratburana Post Office (RPO), represented as residential and industrial areas, respectively. The samples collected were analyzed by inductively coupled plasma-atomic emission spectrometry (ICP-AES) for elemental analysis. The study reveals that total suspended particulate (TSP) concentrations are higher in the RPO (144.47 microg/m(3)) than at the HCH (110.93 microg/m(3)) site. The results also indicate that most of the metals were highest in winter and lowest in the rainy season. Na, Al, K, and Fe are the elements mostly found in the study. High-correlation coefficients of Al-K, K-Zn, and Al-Zn are observed at the HCH (R=-0.99, -0.97, and -0.97) and the RPO (R=-0.94, -0.92, and -0.83), respectively. Most of the measured metallic elements show weak correlation with meteorological parameters. Principal component analysis (PCA) indicates that soil, construction, vehicular emission, and biomass burning are the major pollutant sources of both sampling site. The HCH site is influenced by the domestic activities like vehicular emission, construction, and biomass burning. The sources of airborne metals found in the RPO come from both domestic and industrial activities.
The excessive production of construction waste is a significant concern as it requires proper disposal and may become economically unfeasible. Reusing construction waste in producing new concrete can substantially reduce the disposal requirements of construction waste. In addition, this results in a sustainable solution for the rapidly depleting natural resources of concrete. Pervious concrete may contain up to 80% coarse aggregates and could be an exceptional host for reusing construction waste. This study aimed to investigate the mechanical properties of pervious concrete constructed with natural and recycled aggregates. The substandard properties of recycled aggregates were improved by adding natural fibers from sackcloth. This study presents an experimental program on 45 samples of pervious concrete with air void ratios and the size of coarse aggregates as the parameters of interest. The compressive strength of the pervious concrete decreased by increasing the air void ratio regardless of the size of the aggregates. The type of aggregates did not influence the permeability of pervious concrete, and the maximum temperature in pervious concrete increased as the quantity of air void ratios increased. The decrease in compressive strength was 40–60% as the void ratio was increased from 10–30% for all types of concrete mixes, such as natural and recycled aggregates. The permeability of small-size aggregates with 10% designed air void ratios for natural and recycled aggregates with sackcloth was 0.705 cm/s.
Volatile organic compounds (VOCs) play an important role in atmospheric chemistry due to their high reactivity—reacting photochemically with oxides of nitrogen (NOx) in the presence of solar radiation forming tropospheric ozone (O3). Each VOC species have different effects on ozone formation according to the rates and pathways of their reactions. The objective of this study aims to examine ozone formation from the estimation of ozone formation potential (OFP). The observation of 29 VOCs species was carried out in the urban area near the roads of Bangkok, Thailand. Measurements were carried out during the dry season, from 16th February to 15th March, 2018. The air samples were analyzed using gas chromatography flame ionization detector (GC-FID). The results showed that toluene had the highest VOCs concentration followed by propane, and carbon tetrachloride (CCl4). The average ratio of benzene to toluene (B/T) and toluene to benzene (T/B) indicate that both toluene and benzene emitted from industrial area and vehicular emission. Ratio of m/p-xylene to benzene (m/p-X/B) indicate that BTEX emitted far from the source. The ozone formation potential indicated that toluene was the main VOC contributing to the total ozone formation. High VOCs concentration in monitoring site was influenced by vehicular sources and the sea breeze brought the pollutants back to the land.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.