Identifying affected cancer cells in women’s breasts is mammogram, which is the major issue in the field of medicine all over the world. In order to raise the endurance of patients, it is most essential to identify the issue as early as possible. It also helps them to inflate the different options for treatment. With the new dramatic development in computation, machine learning made a revolution with dataset includes huge volume of breast images which could assist in recognizing malignant tumor with better diagnostics. Digital mammography images are taken, in that the x-ray images are read and stored in computer such that data can be easily enhanced and classified for further action. A novel approach is proposed in this paper to diagnose cancer affected cells with a good accuracy rate. Classification of mammogram with hybrid model includes feature extraction, various kinds of features are extorted from the intensity mammogram. A Particle Swarm Optimization optimizer is used in this paper which selects the features, and kernel-based Support Vector Machine classifier classifies the cancer lump from the taken mammogram metaphors. The exactness of a specific model can be assessed by the level of right forecasts made by the model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.