Coconut oil, rich in medium-chain saturated fatty acids (MCSFA), in particular, lauric acid (LA), is known to exert beneficial metabolic effects. Although LA is the most abundant saturated fatty acid in coconut oil, the specific role of LA in altering obesity-related metabolic disorders remains unknown. Here, we examined the effects of supplementing a high fat (HF) diet with purified LA on obesity-associated metabolic derangements in comparison with palmitic acid (PA), a long-chain saturated fatty acid. Male C57BL/6 mice were fed a control chow diet (CD) or an HF diet supplemented with 3% LA (HF + LA) or PA (HF + PA) for 12 wk. Markers of adipose tissue (AT) inflammation, systemic insulin resistance (IR), and hepatic steatosis, were assessed. The body weight and total fat mass were significantly higher in both HF + LA and HF + PA diet-fed groups compared to CD controls. However, the visceral adipose tissue (VAT) mass was significantly higher (p < 0.001) in HF + LA-fed mice compared to both CD as well as HF + PA-fed mice. Interestingly, markers of AT inflammation were promoted to a lesser extent in HF + LA-fed mice compared to HF + PA-fed mice. Thus, immunohistochemical analysis of VAT showed an increase in MCP-1 and IL-6 staining in HF + PA-fed mice but not in HF + LA-fed mice compared to CD controls. Further, the mRNA levels of macrophage and inflammatory markers were significantly higher in HF + PA-fed mice (p < 0.001) whereas these markers were increased to a lesser extent in HF + LA-fed group. Of note, the insulin tolerance test revealed that IR was significantly increased only in HF + PA-fed mice but not in HF + LA-fed group compared to CD controls. While liver triglycerides were increased significantly in both HF + PA and HF + LA-fed mice, liver weight and plasma markers of liver injury such as alanine aminotransferase and aspartate aminotransferase were increased significantly only in HF + PA-fed mice but not in HF + LA-fed mice. Taken together, our data suggest that although both LA and PA increased AT inflammation, systemic IR, and liver injury, the extent of metabolic derangements caused by LA was less compared to PA in the setting of high fat feeding.
Alcohol‐associated liver disease (AALD) encompasses a spectrum of liver diseases that includes simple steatosis, steatohepatitis, fibrosis, and cirrhosis. The adverse effects of alcohol in liver and the mechanisms by which ethanol (EtOH) promotes liver injury are well studied. Although liver is known to be the primary organ affected by EtOH exposure, alcohol's effects on other organs are also known to contribute significantly to the development of liver injury. It is becoming increasingly evident that adipose tissue (AT) is an important site of EtOH action. Both AT storage and secretory functions are altered by EtOH. For example, AT lipolysis, stimulated by EtOH, contributes to chronic alcohol‐induced hepatic steatosis. Adipocytes secrete a wide variety of biologically active molecules known as adipokines. EtOH alters the secretion of these adipokines from AT, which include cytokines and chemokines that exert paracrine effects in liver. In addition, the level of EtOH‐metabolizing enzymes, in particular, CYP2E1, rises in the AT of EtOH‐fed mice, which promotes oxidative stress and/or inflammation in AT. Thus, AT dysfunction characterized by increased AT lipolysis and free fatty acid mobilization and altered secretion of adipokines can contribute to the severity of AALD. Of note, moderate EtOH exposure results in AT browning and activation of brown adipose tissue which, in turn, can promote thermogenesis. In this review article, we discuss the direct effects of EtOH consumption in AT and the mechanisms by which EtOH impacts the functions of AT, which, in turn, increases the severity of AALD in animal models and humans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.