Energy efficiency (EE) are recognized globally as a critical solution towards reduction of energy consumption, while the management of global carbon dioxide emission complement climate change. EE initiatives drive is a key factor towards climate change mitigation with variable renewable technologies. The paper aimed to design and simulate photovoltaic (PV), fuel cell stack (FCS) systems, and battery-super capacitor energy storage to enhance sustainable clean energy load demand and provide significant decarbonization potentials. An integration of high volume of data in real-time was obtained and energy mix fraction towards low carbon emission mitigation pathway strategy for grid linked renewables electricity generation was proposed as a solution for the future transport manufacturing energy supplement in South Africa. The interrelationship between energy efficiency and energy intensity variables are envisaged to result in approximately 87.6% of global electricity grid production; electricity energy demand under analysis can reduce the CO2 emissions by 0.098 metric tons and CO2 savings by 99.587 per metric tons. The scope serves as a fundamental guideline for future studies in the future transport manufacturing with provision of clean energy and sufficient capacity to supply the demand for customers within the manufacturing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.