In the spring of 1988 an interagency consortium of Federal Land Managers and the Environmental Protection Agency initiated a national visibility and aerosol monitoring network to track spatial and temporal trends of visibility and visibility‐reducing particles. The monitoring network consists of 36 stations located mostly in the western United States. The major visibility‐reducing aerosol species, sulfates, nitrates, organics, light‐absorbing carbon, and wind‐blown dust are monitored as well as light scattering and extinction. Sulfates and organics are responsible for most of the extinction at most locations throughout the United States, while at sites in southern California nitrates are dominant. In the eastern United States, sulfates contribute to about two thirds of the extinction. In almost all cases, extinction and the major aerosol types are highest in the summer and lowest during the winter months.
A large international field experiment and use of transport modeling has yielded physical, chemical, and radiative properties of the abundant aerosols originating from Asia.
Doppler weather radar imaging enabled the rapid recovery of the Sutter's Mill meteorite after a rare 4-kiloton of TNT-equivalent asteroid impact over the foothills of the Sierra Nevada in northern California. The recovered meteorites survived a record high-speed entry of 28.6 kilometers per second from an orbit close to that of Jupiter-family comets (Tisserand's parameter = 2.8 ± 0.3). Sutter's Mill is a regolith breccia composed of CM (Mighei)-type carbonaceous chondrite and highly reduced xenolithic materials. It exhibits considerable diversity of mineralogy, petrography, and isotope and organic chemistry, resulting from a complex formation history of the parent body surface. That diversity is quickly masked by alteration once in the terrestrial environment but will need to be considered when samples returned by missions to C-class asteroids are interpreted.
[1] Using an elemental signature for Asian dust derived from events in April 1998, we probed a long-term set of routine aerosol samples to develop the first empirical assessment of the frequency and intensity of dust transport from Asia to midlatitude North America. Our data reveal a pattern of consistent, frequent transport that contradicts the episodic characterization derived from short-term studies and anecdotal reports. We find that fine (<2.5 mm) Asian dust is a regular component of the troposphere over the eastern Pacific and western North America and is common, at least in spring, across North America. Typical Asian fine dust concentrations (24-hour average) are between 0.2 and 1 mg/m 3 and only very rarely exceed 5 mg/m 3 . Our data also indicate that Asian dust is concentrated in an altitude zone ranging from about 500 to 3000 m MSL, consistent with isentropic transport processes previously observed in the western Pacific.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.