Current computer simulations of biomolecules typically make use of classical molecular dynamics methods, as a very large number (tens to hundreds of thousands) of atoms are involved over timescales of many nanoseconds. The methodology for treating short-range bonded and van der Waals interactions has matured. However, long-range electrostatic interactions still represent a bottleneck in simulations. In this article, we introduce the basic issues for an accurate representation of the relevant electrostatic interactions. In spite of the huge computational time demanded by most biomolecular systems, it is no longer necessary to resort to uncontrolled approximations such as the use of cutoffs. In particular, we discuss the Ewald summation methods, the fast particle mesh methods, and the fast multipole methods. We also review recent efforts to understand the role of boundary conditions in systems with long-range interactions, and conclude with a short perspective on future trends.
We present an overview of the SIBFA polarizable molecular mechanics procedure, which is formulated and calibrated on the basis of quantum chemistry (QC). It embodies nonclassical effects such as electrostatic penetration, exchange-polarization, and charge transfer. We address the issues of anisotropy, nonadditivity, and transferability by performing parallel QC computations on multimolecular complexes. These encompass multiply H-bonded complexes and polycoordinated complexes of divalent cations. Recent applications to the docking of inhibitors to Zn-metalloproteins are presented next, namely metallo-β-lactamase, phosphomannoisomerase, and the nucleocapsid of the HIV-1 retrovirus. Finally, toward third-generation intermolecular potentials based on density fitting, we present the development of a novel methodology, the Gaussian electrostatic model (GEM), which relies on ab initio-derived fragment electron densities to compute the components of the total interaction energy. As GEM offers the possibility of a continuous electrostatic model going from distributed multipoles to densities, it allows an inclusion of short-range quantum effects in the molecular mechanics energies. The perspectives of an integrated SIBFA/GEM/QM procedure are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.