Background As a priority group, healthcare personnel (HCP) will be key to success of COVID-19 vaccination programs. The purpose of this study was to assess HCP willingness to get vaccinated and identify specific concerns that would undermine vaccination efforts. Methods We conducted a cross-sectional survey of HCP, including clinical and non-clinical staff, researchers, and trainees between November 23 rd ,2020 and December 5 th ,2020. The survey evaluated attitudes, beliefs and willingness to get vaccinated. Results A total of 5287 respondents had a mean age of 42.5 years (SD=13.56), and were 72.8% female (n=3842). Overall 57.5 % of individuals expressed intent to receive COVID-19 vaccine. 80.4% were physicians and scientists representing the largest group. 33.6% of registered nurses, 31.6% of allied health professionals, and 32% of master’s level clinicians were unsure they would take the vaccine (p<.001). Respondents who were older, males, White, or Asian were more likely to get vaccinated compared to other groups. Vaccine safety, potential adverse events, efficacy and speed of vaccine development dominated concerns listed by participants. Fewer (54.0%) providers of direct care vs. non-care providers (62.4%), and 52.0% of those who had provided care for COVID-19 patients (vs. 60.6% of those who had not) indicated they would take the vaccine if offered (p<.001). Conclusions We observed that self-reported willingness to receive vaccination against COVID-19 differs by hospital roles, with physicians and research scientists showing the highest acceptance. These findings highlight important heterogeneity in personal attitudes among HCPs around COVID-19 vaccines and highlight a need for tailored communication strategies.
BackgroundWhile bilaterality is a defining characteristic of triploblastic animals, several assemblages have managed to break this symmetry in order to exploit the adaptive peaks garnered through the lateralization of behaviour or morphology. One striking example of an evolved asymmetry in vertebrates comes from a group of scale-eating cichlid fishes from Lake Tanganyika. Members of the Perissodini tribe of cichlid fishes have evolved dental and craniofacial asymmetries in order to more effectively remove scales from the left or right flanks of prey. Here we examine the evolution and development of craniofacial morphology and laterality among Lake Tanganyika scale-eating cichlids.ResultsUsing both geometric and traditional morphometric methods we found that the craniofacial evolution in the Perissodini involved discrete shifts in skeletal anatomy that reflect differences in habitat preference and predation strategies. Further, we show that the evolutionary history of the Perissodini is characterized by an accentuation of craniofacial laterality such that certain taxa show elaborate sided differences in craniofacial shape consistent with the sub-partitioning of function between sides of the head during attacks. Craniofacial laterality in the scale-eating specialist Perissodus microlepis was found to be evident early in development and exhibited a unimodal distribution, which is contrary to the adult condition where jaw laterality has been described as a discrete, bimodal antisymmetry. Finally, using linkage and association analyses we identified a conserved locus for jaw handedness that segregates among East African cichlids.ConclusionsWe suggest that, during the evolution of the Perissodini, selection has accentuated a latent, genetically determined handedness of the craniofacial skeleton, enabling the evolution of jaw asymmetries in order to increase predation success. Continued work on the developmental genetic basis of laterality in the Perissodini will facilitate a better understanding of the evolution of this unique group of fishes, as well as of left-right axis determination among vertebrates in general.
Adipose fins are appendages found on the dorsal midline between the dorsal and caudal fins in more than 6000 living species of teleost fishes. It has been consistently argued that adipose fins evolved once and have been lost repeatedly across teleosts owing to limited function. Here, we demonstrate that adipose fins originated repeatedly by using phylogenetic and anatomical evidence. This suggests that adipose fins are adaptive, although their function remains undetermined. To test for generalities in the evolution of form in de novo vertebrate fins, we studied the skeletal anatomy of adipose fins across 620 species belonging to 186 genera and 55 families. Adipose fins have repeatedly evolved endoskeletal plates, anterior dermal spines and fin rays. The repeated evolution of fin rays in adipose fins suggests that these fins can evolve new tissue types and increased structural complexity by expressing fin-associated developmental modules in these new territories. Patterns of skeletal elaboration differ between the various occurrences of adipose fins and challenge prevailing hypotheses for vertebrate fin origin. Adipose fins represent a powerful and, thus far, barely studied model for exploring the evolution of vertebrate limbs and the roles of adaptation and generative biases in morphological evolution.
It has been hypothesized that mandibular corpus morphology of primates is related to the material properties of the foods that they chew. However, chewing foods with different material properties is accompanied by low levels of variation in mandibular strain patterns in macaques. We hypothesized that if variation in primate mandible form reflects adaptations to feeding on foods with different material and geometric properties, then this variation will be driven primarily by differences in oral food processing behavior rather than differences in chewing per se. To test this hypothesis, we recorded in vivo bone strain data from the lateral and medial surfaces of the mandibular corpus during complete feeding sequences in three adult male Sapajus as they fed on foods with a range of sizes and material properties. We assessed whether variation in mandibular corpus strain regimes is associated with variation in feeding behaviors and/or chewing on different foods, and we quantified the relative variation in mandibular corpus strain regimes associated with chewing on foods of different material properties versus a range of oral food processing behaviors (incisor, premolar, and molar biting; pulling on incisors; mastication). Feeding behavior had a significant effect on mandibular corpus strain regimes, as did chewing side and the cycle number in a feeding sequence. However, food type had weaker effects and usually only through interaction effects with chewing side and/or cycle type. Strain regimes varied most across different chew sides, then across different behaviors, and lastly between mastication cycles on different foods. Strain magnitudes associated with premolar, molar, and incisor biting were larger than those recorded during mastication. These data suggest that intra- and inter-specific variation in mandible morphology is a trade-off between performance requirements of different oral food processing behaviors and of variation in chewing side, with direct effects of food type being less important.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.